


Lecture Notes in Computer Science 5296
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



María J. Blesa Christian Blum
Carlos Cotta Antonio J. Fernández
José E. Gallardo Andrea Roli
Michael Sampels (Eds.)

Hybrid
Metaheuristics

5th International Workshop, HM 2008
Málaga, Spain, October 8-9, 2008
Proceedings

13



Volume Editors

María J. Blesa
Universitat Politècnica de Catalunya, Barcelona, Spain
E-mail: mjblesa@lsi.upc.edu

Christian Blum
Universitat Politècnica de Catalunya, Barcelona, Spain
E-mail: cblum@lsi.upc.edu

Carlos Cotta
Universidad de Málaga, Málaga, Spain
E-mail: ccottap@lcc.uma.es

Antonio J. Fernández
Universidad de Málaga, Málaga, Spain
E-mail: afdez@lcc.uma.es

José E. Gallardo
Universidad de Málaga, Málaga, Spain
E-mail: pepeg@lcc.uma.es

Andrea Roli
DEIS, Università di Bologna, Cesena, Italy
E-mail: andrea.roli@unibo.it

Michael Sampels
Université Libre de Bruxelles, Bruxelles, Belgium
E-mail: msampels@ulb.ac.be

Library of Congress Control Number: 2008936281

CR Subject Classification (1998): I.2.8, F.2, G.1.6, F.1, G.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-88438-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88438-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12533855 06/3180 5 4 3 2 1 0



Preface

“You see, I have a lot of special knowledge which I apply to the problem, and
which facilitates matters wonderfully,” says Sherlock Holmes to Dr. Watson in
A Study in Scarlet by Arthur Conan Doyle. The knowledge exploited to tackle
difficult problems is probably the main theme of the papers selected for this fifth
edition of the International Workshop on Hybrid Metaheuristics. Indeed, in most
of the papers a specific combination of metaheuristics and other solving tech-
niques is presented for tackling a particular relevant constrained optimization
problem, such as fiber optic networks, timetabling and freight train scheduling
problems. The quest for solvers which can successfully and efficiently handle
relevant problems is the main motivation for research in metaheuristics: it is
important to keep this in mind so as to clearly state our research goals and
methodology. The question arises as to what is the definition of relevant prob-
lems and a possible answer is that any useful and even just interesting or funny
problem can be considered as scientifically relevant.

The research goal of solving relevant problems does not require practitioners
to assemble some software code and, with a little faith in alchemy, hope that
the outcome is a reasonably good solution. On the contrary, this research must
be grounded on a scientific method and on technological skills. That is why it
is so important to support the assessment of an algorithm’s performance with
a sound methodology. This requires studying theoretical models for describing
properties of the hybrid metaheuristics, and to be open to other communities
and to compare our achievements with theirs.

We would like this to be the view of the participants of the International
Workshop on Hybrid Metaheuristics combined with tangible improvements in
producing scientifically grounded results. The selection of papers should be useful
to researchers both in finding new ideas and for implementing efficient solutions.

As in previous editions of this workshop, special care was taken in the re-
viewing process: out of 33 submissions received, 14 papers were selected on the
basis of the reviews by the Program Committee members and evaluations by the
Program Chairs. The review process was systematic and intended for providing
authors with constructive suggestions for improvements. Our special thanks go
to the Program Committee members for their devoted efforts.

An agenda for future research in hybrid metaheuristics could focus on three
objectives: (a) the field should become more rigorous, (b) results need to be
compared with those produced by other techniques, (c) new application areas
should be explored. Rigour is important to earn the acceptance of our colleagues
in related communities. The comparison with related fields is valuable in as-
sessing the effectiveness of hybrid techniques and in developing improved hybrid
algorithms. New application areas can provide us with exciting new problems



VI Preface

that have both stochastic and online elements, which arise both in simulation
and data mining. In other words, “a lot of special knowledge ... which facilitates
matters wonderfully.”

August 2008 Maŕıa J. Blesa
Christian Blum

Carlos Cotta
Antonio J. Fernández

José E. Gallardo
Andrea Roli

Michael Sampels
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José E. Gallardo Universidad de Málaga, Spain
Andrea Roli Università di Bologna, Italy
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An Evolutionary ILS-Perturbation Technique

Manuel Lozano1 and C. Garćıa-Mart́ınez2

1 Department of Computer Science and Artificial Intelligence, University of Granada,
Granada 18071, Spain

2 Department of Computing and Numerical Analysis, University of Córdoba,
Córdoba 14071, Spain

Abstract. This contribution proposes a new perturbation technique for
the iterated local search metaheuristic, which consists in a micro evolu-
tionary algorithm that effectively explores the neighborhood of the so-
lution that should undergo the perturbation operator. Its main idea is
to play the same role as the standard ILS-perturbation operator, but
more satisfactorily. A new model of integrative hybrid metaheuristic is
obtained by incorporating the proposed perturbation approach into the
iterated local search algorithm, because the evolutionary algorithm be-
comes a subordinate component of iterated local search. The benefits
of the proposal in comparison to other iterated local search algorithms
proposed in the literature to deal with binary optimization problems are
experimentally shown.

1 Introduction

In the last few years, a new family of search and optimization algorithms have
arisen based on extending basic heuristic methods by including them into an
iterative framework augmenting their exploration capabilities. This group of ad-
vanced approximate algorithms has received the name metaheuristics (MHs) [5]
and an overview of various existing methods is found in [1]. MHs have proven
to be highly useful for approximately solving difficult optimization problems in
practice because they may obtain good solutions in a reduced amount of time.
Simulated annealing, tabu search, evolutionary algorithms (EAs), ant colony op-
timization, estimation of distribution algorithms, scatter search, path relinking,
GRASP, multi-start and iterated local search, guided local search, and variable
neighborhood search are, among others, often listed as examples of classical MHs,
and they have individual historical backgrounds and follow different paradigms
and philosophies.

Over the last years, a large number of search algorithms were reported that
do not purely follow the concepts of one single classical MH, but they attempt
to obtain the best from a set of MHs (and even other kinds of optimization
methods) that perform together and complement each other to produce a prof-
itable synergy from their combination. These approaches are commonly referred
to as hybrid MHs [19]. Hybrid MHs may be categorized into two different classes
attending on their control strategy [16]: 1) collaborative hybrid MHs, which are

M.J. Blesa et al. (Eds.): HM 2008, LNCS 5296, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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based on the exchange of information between different MHs (and possibly other
optimization techniques) running sequentially or in parallel, and 2) integrative
hybrid MHs, where one search algorithm is considered a subordinate, embedded
component of another algorithm.

Iterated local search (ILS) [9,13] belongs to the group of MHs that extend
classical local search (LS) methods by adding diversification capabilities. The
essential idea of ILS is to perform a biased, randomized walk in the space of
locally optimal solutions instead of sampling the space of all possible candidate
solutions. This walk is built by iteratively applying first a perturbation to a
locally optimal solution, then applying a LS algorithm, and finally using an
acceptance criterion which determines to which locally optimal solution the next
perturbation is applied. Despite its simplicity, it is at the basis of several state-
of-the-art algorithms for real-world problems [9].

An important aspect of ILS is the mechanism to perform perturbations. This
may be a random mechanism or it may be produced by a semi-deterministic
method (e.g., a LS different from the one used in the main algorithm [1]). In this
respect, we should point out that, nowadays, an attractive line of research on
ILS concerns the use of different EA principles to build innovative perturbation
models [11,12,21,24].

With the aim of providing additional results and insights on this line of re-
search, in this contribution, we design a customized EA playing the same role as
the standard ILS-perturbation operator, but more satisfactorily. In particular,
we present an evolutionary ILS-perturbation mechanism that involves a micro
EA that explores the neighborhood of the solution that should undergo the per-
turbation operator. By incorporating the proposed perturbation approach into
ILS, we transform this classical MH into an integrative hybrid MH, because one
of its components is another MH (an EA).

The remainder of this paper is organized as follows. In Section 2, we give an
overview of ILS. In Section 3, we propose the evolutionary perturbation tech-
nique and describe the way it is integrated in ILS. In Section 4, we show the
benefits of the proposal in comparison to other ILS algorithms proposed in the
literature to deal with binary optimization problems. Finally, in Section 5, we
provide the main conclusions of this work and examine future research lines.

2 Iterated Local Search

A high level description of ILS as it is described in [13] is given in Figure 1. The
algorithm starts by applying LS to an initial solution and iterates a procedure
where a perturbation is applied to the current solution S∗ in order to move it
away from its local neighborhood; the solution so obtained is then considered as
initial point for a new LS processing, resulting in another locally optimal solution
SLS. Then, a decision is made between S∗ and SLS to decide from which solution
the next iteration continues.

The perturbation operator is a key aspect to consider, because it allows ILS
to reach a new solution from the set of local optima by escaping from basis of
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Iterated Local Search

1. S0 ← GenerateInitialSolution()
2. S∗ ← LocalSearch(S0)
3. while (termination conditions not met) do

4. SP ← Perturbation(σp, S∗, history)
5. SLS ← LocalSearch(SP )
6. S∗ ← AcceptanceCriterion(S∗, SLS, history)

7. return S∗

Fig. 1. Pseudocode algorithm for ILS

attraction of the previous local optimum. The perturbation is usually nondeter-
ministic in order to avoid cycling. For example, for the case of binary problems,
the perturbation operator flips the bits with a fixed probability. Its most im-
portant characteristic is the perturbation strength (σp), roughly defined as the
amount of changes made on the current solution. The perturbation strength
should be large enough such that the LS does not return to the same local op-
timum in the next iteration. However, it should not be too large; otherwise the
search characteristics will resemble those of a multi-start LS algorithm.

An important aspect in the perturbation and the acceptance criterion is to
introduce a bias between intensification and diversification of the search. In-
tensification can be reached by applying the perturbation always to the best
solution found and using small perturbations. On the other hand, diversification
is achieved by accepting every new solution S∗ and applying large perturbations.
Then, the perturbation operator arises as one of the most determinant compo-
nent of ILS. In addition, it is a key aspect to consider in the design of ILS; as
claimed by [13]: “A good perturbation transforms one excellent solution into an
excellent starting point for a local search”.

The mechanism to perform perturbations may be a random mechanism (as
was aforementioned), or it may be produced by a semi-deterministic method
(e.g., a LS different from the one used in the main algorithm [1]). In this respect,
we should point out that different EA principles have been used to build new
perturbation models. Examples are:

– Population-based ILS (PILS). Thierens [21] proposes a MH that combines
the power of ILS with the principle of extracting useful information about
the search space by keeping a population of solutions. In addition to ILS,
PILS also keeps a small population of neighboring solutions and restricts
the perturbation of ILS to the subspace where the current solution and a
population member disagree, thus preserving their common substructure.
The key assumption of the PILS algorithm is that local optimal solutions
possess common substructures that can be exploited to increase the efficiency
of ILS.

– Genetic ILS (GILS). Katayama et al. [11,12] introduced a new perturbation
mechanism for an ILS instance developed for the traveling salesman problem,
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which was called genetic ILS. This perturbation approach uses a crossover
operator specifically designed to deal with this problem. In each iteration,
GILS perturbs the best found solution, Sbest, generating SP . Then, it applies
the crossover operator to Sbest and SP , producing the final solution that will
be refined by the LS operator.

– ILS with guided mutation (ILS/GM). Zhang et al. [24] used the guided mu-
tation operator [23] as perturbation operator in ILS for the quadratic assign-
ment problem. Guided mutation uses the idea of estimation of distribution
algorithms to improve conventional mutation operators. It provides a mech-
anism for combining global statistical information about the search space
and the position information of a good solution found during the previous
search for generating new trial solution.

3 Evolutionary ILS-Perturbation Technique

As was clearly stated above, a promising research line that may be followed to
improve ILS performance involves the utilization of different EA principles to
design the perturbation mechanism. In this section, we present an evolutionary
ILS-perturbation technique, which is based on the EA model called CHC [2]
(Appendix A). It will be denominated µCHC. Our main idea is to build a new
ILS model, called ILS-µCHC, which follows pseudo-code in Figure 1 replacing
Step 4 by:

4. SP ← µCHC(σp, S∗)

We have conceived µCHC to be an effective explorer in the neighborhood of
S∗. At the beginning of this algorithm, S∗ is used to create its initial population.
Then, it is performed throughout a predetermined number of fitness function
evaluations. The best reached individual is then considered as starting point for
the next LS process (Figure 2).

L S  p r o c e s s

I n i t i a l  so lu t ion

L S  p r o c e s s

L S  p r o c e s s

 

Fig. 2. ILS with evolutionary perturbation technique



An Evolutionary ILS-Perturbation Technique 5

We have chosen the CHC algorithm as basis to build our evolutionary ILS-
perturbation method because it suitably combines powerful diversification mech-
anisms with an elitist selection strategy. The filtering of high diversity by means
of high selective pressure favors the creation of useful diversity; many dissimilar
solutions are produced during the run and only the best ones are conserved in
the population, allowing diverse and promising solutions to be maintained. From
our point of view, this behavior is desirable for an EA assuming the work of a
perturbation operator

Next, we detail the main adaptations made on the original formulation of
CHC to obtain our evolutionary ILS-perturbation technique:

1. Population size. µCHC manages a population with few individuals (N = 5),
and thus, it may be seen as micro EA. In standard ILS models, the number
of fitness function evaluations required by the perturbation mechanism is
very low as compared with the one for the LS method. With the aim of
preserving, as far as possible, the essence of ILS, we have considered an EA
with a low sized population; for being able to work adequately under the
requirement of spending reduced number of evaluations.

2. Number of evaluations. In particular, we have limited this number through
the following strategy: the number of evaluations assigned to µCHC for a
particular invocation will be a fixed proportion, pevals, of the number of
evaluations consumed by the previously performed LS method. It is worth
noting that pevals should be set to a low value.

3. Initial population. Every individual in the initial µCHC population is gener-
ated by performing standard perturbation on the current solution, S∗, using
the perturbation strength σp (which becomes a parameter associated with
µCHC).

4. Cataclysmic mutation. It fills the population with individuals created by the
same way as initial population is built (by perturbing S∗) and preserves the
best performing individual found in the previous evolution. After applying
cataclysmic mutation, the difference threshold (Appendix A) is set to: σp ∗
(1 − σp) ∗ L (i.e., we have considered that σp = pcm).

5. Mating with S∗. Finally, we should highlight that µCHC incorporates the
appealing principle in GILS [12] of recombining S∗ with another solution. In
addition to the typical recombination phase of CHC, our algorithm always
mates S∗ with an individual in the population (selected at random) and, if
they are finally crossed over, attending on the incest prevention mechanism
(Appendix A), the resulting offspring will be introduced into the offspring
population of µCHC.

Finally, we may highlight that our proposal gathers together the idea in
GILS of using a crossover operator with the one of PILS of managing a pop-
ulation of solutions. In this way, it attempts to combine the best of these
methods.
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4 Experiments

We have carried out experiments on a test suite composed by 19 binary optimiza-
tion problems (Appendix B), in order to study the behavior of the ILS model
based on the evolutionary perturbation mechanism presented in the previous
section. Firstly, we describe the experimental setup used (Section 4.1), then, we
analyze the results obtained from different experimental studies carried out with
ILS-µCHC. In particular, our aim is: 1) to ascertain whether the innovative de-
sign of µCHC is suitable to allow this algorithm to outperform other ILS models
with contemporary perturbation methods of the literature (Section 4.2) and 2)
to compare its results with the ones for other ILS instances that were built with
the specific objective of enhancing diversification (Section 4.3). The results of all
executed ILS algorithms may be found in Appendix D.

4.1 Experimental Setup

In this section, we describe the basic scheme of the ILS algorithms (Figure
1) compared in our experiments. They were specifically implemented to tackle
optimization problems in a fixed-length binary search space:

– LS procedure. It is the first-improvement hill-climbing algorithm, which con-
sists in having one individual and keep mutating each gene, one at a time,
in a predefined random sequence, until the resulting individual is fitter than
the original. In that case, the new individual replaces the original and the
procedure is repeated until no improvement can be made further.

– Initial solution. It is a fixed-length binary string generated at random.
– Acceptation criterion. We have used the requirement that new solutions

should have a better (or at least equal) fitness value than the current so-
lution.

All the algorithms were executed 50 times (initial solutions were the same for
the corresponding runs for all the ILS instances), each one with a maximum of
100,000 fitness function evaluations. We have used the Wilcoxon matched-pairs
signed-ranks test to compare the results of our proposal with the ones of other
ILS approaches (see Appendix C).

4.2 Comparison of µCHC with other Perturbation Methods

The main aim of this section is to compare µCHC with other contemporary per-
turbation techniques of the literature. In order to do this, we have implemented
several ILS algorithms that follow the basic scheme described in the previous
section and are distinguished uniquely by the perturbation operator:

– ILS with standard binary-perturbation (SILS). This perturbation method
flips the bits with a fixed probability, the perturbation strength, σp.

– PILS [21]. The values for the parameters associated with the perturbation
operator in this algorithm are N = 5, Pratio = 0.5, and Pmaskmut = 0.25.
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– GILS [12]. We have considered uniform crossover for implementing the per-
turbation strategy for this algorithm.

– ILS/GM [24]. We have implemented the guided mutation operator proposed
in [23] to manipulate binary-coded chromosomes (β was set to 0.005). We
used guidelines in [24] to adapt this operator as perturbation mechanism for
ILS.

µCHC uses standard binary-perturbation for generating initial population and
populations after applying cataclysmic mutation. In addition, it assumes pevals =
0.25, i.e., at each invocation, it consumes the 25% of number of evaluations
utilized by the previous processing of LS procedure.

Since all the implemented ILS algorithms are distinguished uniquely by the
perturbation policy, we may determine the significance of our newly proposed
method. In order to make the comparison, firstly, we investigate the influence
of σp on the performance of these ILS algorithms. In particular, we analyze
the behavior of these algorithms when different values for this parameter are
considered (σp =0.1, 0.25, 0.5, and 0.75).

For each ILS algorithm, Figure 3 shows the average ranking obtained by its
instances with different σp values when compared among them. This measure
is obtained by computing, for each problem, the ranking rj of the observed
results for instance j assigning to the best of them the ranking 1, and to the
worst the ranking k (k is the number of instances). Then, an average measure is
obtained from the rankings of this instance for all test problems. For example, if
a certain instance achieves rankings 1, 3, 1, 4, and 2, on five test functions, the
average ranking is 1+3+1+4+2

5 = 11
5 . Clearly, the lower a column is, the better

its associated ILS instance is.
An important remark from Figure 3 is that the best ranked instance of ILS-

µCHC uses σp = 0.25 while ones for the other ILS algorithms employ σp =
0.1. This indicates that ILS-µCHC achieves its best behavior by working in
more extensive neighborhoods than other ILS algorithms do, i.e., its performance
becomes better by processing higher diversification levels than its competitors.
Next, we investigate whether this mode of operating allows it to obtain better
results. Then, we have undertaken a comparative analysis between ILS-µCHC
with σp = 0.25 and each one of the other ILS algorithms (with all σp values)
by means of the Wilcoxon’s test (Appendix C). Table 1 summarizes the results
of this procedure, where the values of R+ (associated to ILS-µCHC ) and R-
of the test are specified together with the critical values. Last column indicates
whether our algorithm performs statistically equivalent to the other algorithm
(the null hypothesis of equality of means is accepted) or there exist significant
differences between them (the null hypothesis of equality of means is rejected).

From Table 1, we clearly notice that ILS-µCHC obtained improvements with
regards to the other algorithms, which are statistically significant (because all R-
values are lower than both R+ ones and critical values). These initial experiments
suggest that our evolutionary ILS-perturbation technique may really enhance the
operation of ILS and, thus, it becomes prospective for effectively exploring the
neighborhood of S∗.
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Fig. 3. Average rankings obtained by ILS instances with different σp values

Table 1. ILS-µCHC (σp = 0.25) versus ILS algorithms with other perturbation models
(Wilcoxon’s test with p-value = 0.05)

ILS-µCHC vs. R+ R− Critical value Sig. differences?
SILS (σp = 0.1) 177.0 13.0 46 yes
SILS (σp = 0.25) 186.0 4.0 46 yes
SILS (σp = 0.5) 183.0 7.0 46 yes
SILS (σp = 0.75) 171.0 19.0 46 yes
PILS (σp = 0.1) 180.0 10.0 46 yes
PILS (σp = 0.25) 186.0 4.0 46 yes
PILS (σp = 0.5) 173.0 17.0 46 yes
PILS (σp = 0.75) 164.0 26.0 46 yes
GILS (σp = 0.1) 170.0 20.0 46 yes
GILS (σp = 0.25) 182.0 8.0 46 yes
GILS (σp = 0.5) 187.0 3.0 46 yes
GILS (σp = 0.75) 186.0 4.0 46 yes
ILS/GM (σp = 0.1) 167.0 23.0 46 yes
ILS/GM (σp = 0.25) 185.0 5.0 46 yes
ILS/GM (σp = 0.5) 187.0 3.0 46 yes
ILS/GM (σp = 0.75) 185.0 5.0 46 yes

4.3 Comparison with ILS Approaches That Use Diversification
Techniques

In this section, we compare ILS-µCHC with other ILS models built by enhancing
diversification properties of standard ILS:

– ILS with random walk acceptance (ILS-RW). The acceptance criterion can
roughly be used to control the balance between intensification and diver-
sification for ILS search [13]. A simple way to illustrate this is to consider
a Markovian acceptance criterion. A very strong intensification is achieved



An Evolutionary ILS-Perturbation Technique 9

if only better solutions are accepted. At the opposite extreme is the ran-
dom walk acceptance criterion (denoted by RW) which always applies the
perturbation to the most recently visited local optimum, irrespective of its
cost. This criterion clearly favors diversification over intensification, because
it promotes a stochastic search in the space of local optima.

– Collaborative ILS (CILS). Another convenient way of empowering ILS ex-
ploration involves the idea of replacing a single ILS run by a population of
ILS runs that interact each others in some way [18] (we call this ILS model
collaborative ILS). The aim of this strategy is to avoid a stagnation behavior
by, in some sense, delaying the decision on which solution one has to con-
centrate to find the highest solution quality; by the use of a population of
ILS runs, the algorithm is not forced to concentrate the search only around
the best solution found as done in single ILS runs.
We have implemented a variant of collaborative ILS, called replace-worst,
that starts with λ solutions each of which follows a standard ILS algorithm,
except that every nIt iterations a copy of the current best solution replaces
the worst solution in the population. We have considered λ = 20 and tried
two different situations with regards to the communication strategy among
ILS runs: 1) without communication (i.e., multiple independent trials of an
ILS algorithm) and 2) with nIt = 3. They are denoted as CILS-wc and
CILS-3, respectively.

The performance comparison among ILS-µCHC and each one of these algo-
rithms was carried out by means of the Wilcoxon’s test. Table 2 has the results
for p-value = 0.05.

Results of the Wilcoxon’s test in Table 2 advise us that our algorithm con-
sistently outperforms all ILS algorithms based on strategies to enhance diversi-
fication. In particular, an interesting remark from improvement on CILS is that
it becomes more fruitful executing only one ILS instance with a perturbation
operator that focuses diversification by managing a set of solutions (such as
ILS-µCHC does) than favoring diversification by keeping multiple collaborative
ILS runs that employ standard perturbation operator.

Table 2. ILS-µCHC (σp = 0.25) versus ILS algorithms with enhanced diversification
(Wilcoxon’s test with p-value = 0.05)

ILS-µCHC vs. R+ R− Critical value Sig. differences?
ILS-RW (σp = 0.1) 190.0 0.0 46 yes
ILS-RW (σp = 0.25) 190.0 0.0 46 yes
ILS-RW (σp = 0.5) 185.0 5.0 46 yes
ILS-RW (σp = 0.75) 163.0 27.0 46 yes
CILS-wc (σp = 0.1) 182.0 8.0 46 yes
CILS-wc (σp = 0.25) 182.0 8.0 46 yes
CILS-wc (σp = 0.5) 179.0 11.0 46 yes
CILS-wc (σp = 0.75) 163.0 27.0 46 yes
CILS-3 (σp = 0.1) 181.0 9.0 46 yes
CILS-3 (σp = 0.25) 180.0 10.0 46 yes
CILS-3 (σp = 0.5) 179.0 11.0 46 yes
CILS-3 (σp = 0.75) 163.0 27.0 46 yes
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These results and ones obtained in previous sections allow us to conclude that
our evolutionary perturbation technique may really enhance the operation of the
ILS algorithm; in fact, the ILS instance performing this perturbation technique
resulted very competitive with the state-of-the-art on this well-known MH for
binary optimization problems.

5 Conclusions

In this paper, we presented an evolutionary perturbation technique that may
replace, without great difficulties, the standard perturbation operator of ILS,
developing their work more effectively and with a relatively low computational
cost. An outstanding remark is that the resulting ILS model becomes an integra-
tive hybrid MH. The proposal has turned out to be very competitive with state-
of-the-art ILS models for binary optimization problems. Therefore, the research
line focused in this paper is indeed worth of further studies. We are currently
extending our investigation to build evolutionary ILS-perturbation techniques
being well-suited to deal with real-world problems, such as the traveling sales-
man problem, the quadratic assignment problem, the p-median problem, etc.
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A CHC Algorithm

The key idea of the CHC algorithm [2] concerns the combination of a selection
strategy with a very high selective pressure and several components inducing
a strong diversity. The four main components of the algorithm are shown as
follows:

– Elitist selection. The N members of the current population are merged with
the offspring population obtained from it and the best N individuals are
selected to compose the new population.

– Half uniform crossover. It is a highly disruptive crossover that crosses over
exactly half of the non-matching alleles (the bits to be exchanged are chosen
at random without replacement).

– Incest prevention mechanism. During the reproduction step, each member
of the parent (current) population is randomly chosen without replacement
and paired for mating. Before mating, the Hamming distance between the
potential parents is calculated and if half this distance does not exceed a
difference threshold d, they are not mated and no offspring coming from
them is included in the offspring population. The aforementioned threshold is
usually initialized to L

4 (with L being the chromosome length). If no offspring
is obtained in one generation, the difference threshold is decremented by one.

– Cataclysmic mutation. CHC uses no mutation in the classical sense of the
concept, but instead, it goes through a process of cataclysmic mutation when
the population has converged. The difference threshold is considered to mea-
sure the stagnation of the search, which happens when it has dropped to zero
and several generations have been run without introducing any new individ-
ual in the population. Then, the population is reinitialized by considering
the best individual as the first chromosome of the new population and gen-
erating the remaining N − 1 ones by randomly flipping a number of its bits,
determined by the cataclysmic mutation rate, pcm (usually pcm = 0.35). Af-
ter invoking the cataclysmic mutation, the difference threshold is reinitiated
to: pcm ∗ (1 − pcm) ∗ L.

B Test Suite

The test suite that we have used for different experiments consists of 19 binary-
coded optimization problems. Table 3 shows their names, reference where a de-
tailed description may be found, the length of the binary solutions (L), whether
they are formulated as maximization or minimization problems, and finally, the
fitness value of the global optimum. Since problems from fSch to fSLE are de-
fined on continuous domains, their variables were encoded into bit strings using
binary reflected Gray coding, with 20 binary genes assigned to each variable. The
dimension of the search space is 10 for fSLE and 5 for the remaining continuous
test functions.
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C The Wilcoxon Matched-Pairs Signed-Ranks Test

Wilcoxon’s test is used for answering this question: do two samples represent two
different populations? It is a non-parametric procedure employed in a hypothesis
testing situation involving a design with two samples. It is the analogous of
the paired t-test in non-parametrical statistical procedures; therefore, it is a
pairwise test that aims to detect significant differences between the behavior of
two algorithms.

The null hypothesis for Wilcoxon’s test is H0 : θD = 0; in the underlying pop-
ulations represented by the two samples of results, the average of the difference
scores equals zero. The alternative hypothesis is H1 : θD �= 0, but also can be
used H1 : θD > 0 or H1 : θD < 0 as directional hypothesis.

In the following, we describe the tests computations. Let di be the difference
between the performance scores of the two algorithms on i-th out of N functions.
The differences are ranked according to their absolute values; average ranks are
assigned in case of ties. Let R+ be the sum of ranks for the functions on which
the second algorithm outperformed the first, and R− the sum of ranks for the
opposite. Ranks of di = 0 are split evenly among the sums; if there is an odd
number of them, one is ignored:

R+ =
∑
di>0

rank(di) +
1
2

∑
di=0

rank(di) and

R− =
∑
di<0

rank(di) +
1
2

∑
di=0

rank(di)

Table 3. Test suite

Name Ref. L Max/Min Fit. op.
Deceptive problem (D) [6] 120 Max 900
Massively multimodal deceptive problem (MMD) [7] 240 Max 40
Bipolar deceptive problem (BD) [14] 120 Max 20
Overlapping deceptive problem (OD) [14] 150 Max 74
Trap problem (T) [21] 180 Max 1100
Trap-5 problem (T5) [15] 150 Max 150
Royal road problem (RR) [3] 200 Max 200
Hierarchical if-and-only-if problem [10]

HIFF1 128 Max 1024
HIFF2 256 Max 2304

Zero/one multiple knapsack problem [20]
K1 (weing7 [8]) 105 Max 1095445
K2 (weish26 [8]) 90 Max 9584

Schwefel’s function 2.21 (fSch) [4] 100 Min 0
Quartic noise function (fQN ) [4] 100 Min 0
Rotated generalized Rastrigin’s function (fRRas) [4] 100 Min 0
Generalized Griewank function (fGri) [4] 100 Min 0
Composed fGri − fRos (fC) [4] 100 Min 0
Schaffer’s function (fScha) [4] 100 Min 0
Expanded F10 (EF10) [4] 100 Min 0
Systems of linear equations (fSLE) [4] 200 Min 0
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Table 4. Results of the algorithms
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Let T be the smallest of the sums, T = min(R+, R−). If T is less than or equal
to the value of the distribution of Wilcoxon for N degrees of freedom (Table B.12
in [22]), the null hypothesis of equality of means is rejected.

The obtaining of the p-value associated to a comparison is performed by
means of the normal approximation for the Wilcoxon T statistic (Section VI,
Test 18 in [17]). Furthermore, the computation of the p-value for this test
is usually included in well-known statistical software packages (SPSS, SAS,
R, etc.).

D Results of the Algorithms

Table 4 outlines the average of the best fitness function found at the end of each
run for all algorithms executed for the experimental studies carried out in the
paper.
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Abstract. Reinforcement Learning algorithms such as SARSA with an eligi-
bility trace, and Evolutionary Computation methods such as genetic algorithms,
are competing approaches to solving Partially Observable Markov Decision Pro-
cesses (POMDPs) which occur in many fields of Artificial Intelligence. A pow-
erful form of evolutionary algorithm that has not previously been applied to
POMDPs is the cultural algorithm, in which evolving agents share knowledge
in a belief space that is used to guide their evolution. We describe a cultural algo-
rithm for POMDPs that hybridises SARSA with a noisy genetic algorithm, and
inherits the latter’s convergence properties. Its belief space is a common set of
state-action values that are updated during genetic exploration, and conversely
used to modify chromosomes. We use it to solve problems from stochastic in-
ventory control by finding memoryless policies for nondeterministic POMDPs.
Neither SARSA nor the genetic algorithm dominates the other on these prob-
lems, but the cultural algorithm outperforms the genetic algorithm, and on highly
non-Markovian instances also outperforms SARSA.

1 Introduction

Reinforcement Learning and Evolutionary Computation are competing approaches to
solving Partially Observable Markov Decision Processes, which occur in many fields
of Artificial Intelligence. In this paper we describe a new hybrid of the two approaches,
and apply it to problems in stochastic inventory control. The remainder of this section
provides some necessary background information. Section 2 describes our general ap-
proach, an instantiation, and convergence results. Section 3 describes and models the
problems. Section 4 presents experimental results. Section 5 concludes the paper.

1.1 POMDPs

Markov Decision Processes (MDPs) can model sequential decision-making in situa-
tions where outcomes are partly random and partly under the control of the agent. The
states of an MDP possess the Markov property: if the current state of the MDP at time t
is known, transitions to a new state at time t + 1 are independent of all previous states.
MDPs can be solved in polynomial time (in the size of their state-space) by modelling

M.J. Blesa et al. (Eds.): HM 2008, LNCS 5296, pp. 16–28, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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them as linear programs, though the order of the polynomials is large enough to make
them difficult to solve in practice [14]. If the Markov property is removed then we obtain
a Partially Observable Markov Decision Process (POMDP) which in general is compu-
tationally intractable. This situation arises in many applications and can be caused by
partial knowledge: for example a robot must often navigate using only partial knowl-
edge of its environment. Machine maintenance and planning under uncertainty can also
be modelled as POMDPs.

Formally, a POMDP is a tuple 〈S, A, T, R, O, Ω〉 where S is a set of states, A a set of
actions, Ω a set of observations, R : S×A → � a reward function, T : S×A → Π(S) a
transition function, and Π(·) represents the set of discrete probability distributions over
a finite set. In each time period t the environment is in some state s ∈ S and the agent
takes an action a ∈ A, which causes a transition to state s′ with probability P (s′|s, a),
yielding an immediate reward given by R and having an effect on the environment given
by T . The agent’s decision are based on its observations given by O : S ×A → Π(Ω).

When solving a POMDP the aim is to find a policy: a strategy for selecting actions
based on observations that maximises a function of the rewards, for example the total
reward. A policy is a function that maps the agent’s observation history and its current
internal state to an action. A policy may also be deterministic or probabilistic: a deter-
ministic policy consistently chooses the same action when faced with the same informa-
tion, while a probabilistic policy might not. A memoryless (or reactive) policy returns
an action based solely on the current observation. The problem of finding a memoryless
policy for a POMDP is NP-complete and exact algorithms are very inefficient [12] but
there are good inexact methods, some of which we now describe.

1.2 Reinforcement Learning Methods

Temporal difference learning algorithms such as Q-Learning [32] and SARSA [25]
from Reinforcement Learning (RL) are a standard way of finding good policies. While
performing Monte Carlo-like simulations they compute a state-action value function
Q : S×A → � which estimates the expected total reward for taking a given action from
a given state. (Some RL algorithms compute instead a state value function V : S → �.)

The SARSA algorithm is shown in Figure 1. An episode is a sequence of states and
actions with a first and last state that occur naturally in the problem. On taking an action
that leads to a new state, the value of the new state is “backed up” to the state just left
(see line 8) by a process called bootstrapping. This propagates the effects of later actions
to earlier states and is a strength of RL algorithms. (The value γ is a discounting factor
often used for non-episodic tasks that is not relevant for our application below: we
set γ = 1.) A common behaviour policy is ε-greedy action selection: with probability
ε choose a random action, otherwise with probability 1 − ε choose the action with
highest Q(s, a) value. After a number of episodes the state-action values Q(s, a) are
fixed and (if the algorithm converged correctly) describe an optimum policy: from each
state choose the action with highest Q(s, a) value. The name SARSA derives from the
tuple (s, a, r, s′, a′).

RL algorithms have convergence proofs that rely on the Markov property but for
some non-Markovian applications they still perform well, especially when augmented
with an eligibility trace [10,16] that effectively hybridises them with a Monte Carlo
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1 initialise the Q(s, a) arbitrarily
2 repeat for each episode
3 ( s ← initial state
4 choose action a from s using a behaviour policy
5 repeat for each step of the episode
6 ( take action a and observe r, s′

7 choose action a′ from s′ using a behaviour policy
8 Q(s, a) ← Q(s, a) + α [r + γQ(s′, a′) − Q(s, a)]
9 s ← s′, a ← a′

10 )
11 )

Fig. 1. The SARSA algorithm

algorithm. We will use a well-known example of such an algorithm: SARSA(λ) [25].
When the parameter λ is 0 SARSA(λ) is equivalent to SARSA, when it is 1 it is equiva-
lent to a Monte Carlo algorithm, and with an intermediate value it is a hybrid and often
gives better results than either. Setting λ > 0 boosts bootstrapping by causing values
to be backed up to states before the previous one. (See [30] for a discussion of eligi-
bility traces, their implementation, and the relationship with Monte Carlo algorithms.)
There are other more complex RL algorithms (see [13] for example) and it is possible
to configure SARSA(λ) differently (for example by using softmax action selection in-
stead of ε-greedy, and different values of α for each state-action value [30]), but we take
SARSA(λ) as a representative of RL approaches to solving POMPDs. (In fact it usually
outperforms two versions of Q-learning with eligibility trace — see [30] page 184.)

1.3 Evolutionary Computation Methods

An alternative approach to POMDPs is the use of Evolutionary Computation (EC) al-
gorithms such as Genetic Algorithms (GAs), which sometimes beat RL algorithms on
highly non-Markovian problems [3,19]. We shall use the most obvious EC model of
POMDPs, called a table-based representation [19]: each chromosome represents a pol-
icy, each gene a state, and each allele (gene value) an action.

The GA we shall use is based on GENITOR [33] but without the refinements of some
versions, such as genetic control of the crossover probability. This is a steady-state GA
that, at each iteration, selects two parent chromosomes, breeds a single offspring, evalu-
ates it, and uses it to replace the least-fit member of the population. Steady-state GAs are
an alternative to generational GAs that generate an entire generation at each iteration,
which replaces the current generation. Maintaining the best chromosomes found so far
is an elitist strategy that pays off on many problems. Parent selection is random because
of the strong selection pressure imposed by replacing the least-fit member. We use stan-
dard uniform crossover (each offspring gene receives an allele from the corresponding
gene in a randomly-chosen parent) applied with a crossover probability pc: if it is not
applied then a single parent is selected and mutated, and the resulting chromosome
replaces the least-fit member of the population. Mutation is applied to a chromosome
once with probability pm, twice with probability p2

m, three times with probability p3
m,

and so on. The population size is P and the initial population contains random alleles.
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Nondeterminism in the POMDP causes noise in the GA’s fitness function. To han-
dle this noise we adopt the common approach of averaging the fitness over a number
of samples S. This technique has been used many times in Noisy Genetic Algorithms
(NGAs) [4,6,17,18]. NGAs are usually generational and [1] show that elitist algorithms
(such as GENITOR) can systematically overvalue chromosomes, but such algorithms
have been successful when applied to noisy problems [29]. We choose GENITOR for
its simplicity.

1.4 Hybrid Methods

Several approaches can be seen as hybrids of EC and RL. Learning Classifier Systems
[8] use EC to adapt their representation of the RL problem. They apply RL via the EC
fitness function. Population-Based Reinforcement Learning [11] uses RL techniques to
improve chromosomes, as in a memetic algorithm. The paper is an outline only, and
no details are given on how RL values are used, nor are experimental results provided.
GAQ-Learning [15] uses Q-Learning once only in a preprocessing phase, to generate
Q(s, a) values. A memetic algorithm is then executed using the Q(s, a) values to eval-
uate the chromosomes. Q-Decomposition [26] combines several RL agents, each with
its own rewards, state-action values and RL algorithm. An arbitrator combines their
recommendations, maximising the sum of the rewards for each action. It is designed
for distributed tasks that are not necessarily POMPDs. Global convergence is guaran-
teed if the RL algorithm is SARSA but not if it is Q-Learning. In [9] a GA and RL are
combined to solve a robot navigation problem. The greedy policy is applied for some
time (until the robot encounters difficulty); next the GA population is evaluated, and
the fittest chromosome used to update the state-action values by performing several RL
iterations; next a new population is generated in a standard way, except that the state-
action values are used probabilistically to alter chromosomes; then the process repeats.
Several other techniques are used, some specific to robotics applications, but here we
consider only the RL-EC hybrid aspects.

2 A Cultural Approach to POMDPs

A powerful form of EC is the cultural algorithm (CA) [21], in which agents share
knowledge in a belief space to form a consensus. (The belief space of a CA is dis-
tinct from the belief space of a POMDP, which we do not refer to in this paper.)
These hybrids of EC and Machine Learning have been shown to converge more quickly
than EC alone on several applications. CAs were developed as a complement to the
purely genetic bias of EC. They are based on concepts used in sociology and archae-
ology to model cultural evolution. By pooling knowledge gained by individuals in a
body of cultural knowledge, or belief space, convergence rates can sometimes be im-
proved. A CA has an acceptance function that determines which individuals in the
population are allowed to adjust the belief space. The beliefs are conversely used to
influence the evolution of the population. See [22] for a survey of CA applications,
techniques and belief spaces. They have been applied to constrained optimisation [5],
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multiobjective optimisation [2], scheduling [24] and robot soccer [23], but to the best
of our knowledge they have not been applied to POMDPs, nor have they utilised RL.

2.1 Cultural Reinforcement Learning

We propose a new cultural hybrid of reinforcement learning and evolutionary computa-
tion for solving POMDPs called CUltural Reinforcement Learning (CURL). The CURL
approach is straightforward and can be applied to different RL and EC algorithms. A
single set of RL state-action values Q(s, a) is initialised as in the RL algorithm, and the
population is initialised as in the EC algorithm. The EC algorithm is then executed as
usual, except that each new chromosome is altered by, and used to alter, the Q(s, a),
which constitute the CA belief space. On generating a new chromosome we replace,
with some probability pl, each allele by the corresponding greedy action given by the
modified Q(s, a) values. Setting pl = 0 prevents any learning, and CURL reduces to the
EC algorithm, while pl = 1 always updates a gene to the corresponding Q(s, a) value,
and CURL reduces to SARSA(λ) without exploration. We then treat the modified chro-
mosome as usual by the EC algorithm: typically, fitness evaluation and placement into
the population. During fitness evaluation the Q(s, a) are updated by bootstrapping as
usual in the RL algorithm, but the policy followed is that specified by the modified chro-
mosome. Thus in CURL, as in several other CAs [22], all chromosomes are allowed to
adjust the belief space. There is no ε parameter in CURL because exploratory moves
are provided by EC.

We may use a steady-state or generational GA, or other form of EC algorithm, and
we may use one of the Q-Learning or Q(λ) algorithms to update the Q(s, a), but in this
paper we use the GENITOR-based NGA and SARSA(λ). The resulting algorithm is
outlined in Figure 2, in which SARSA(λ,α,O) denotes a SARSA(λ) episode with a
given value of the α parameter, following the policy specified by chromosome O while
updating the Q(s, a) as usual. As in NGA the population in randomly initialised and
fitness is evaluated using S samples. Note that for a deterministic POMDP only one
sample is needed to obtain the fitness of a chromosome, so we can set S = 1 to obtain
a CURL hybrid of SARSA(λ) and GENITOR.

CURL(S,P,pc,pm,α,λ,pl):
( create population of size P

evaluate population using S samples
initialise the Q(s, a)
while not(termination condition)
( generate an offspring O using pc, pm

update O using pl and the Q(s, a)
call SARSA(λ,α,O) S times to estimate O fitness

and bootstrap the Q(s, a)
replace least-fit chromosome by O

)
output fittest chromosome

)

Fig. 2. CURL instantiation
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2.2 Convergence

For POMDPS, unlike MDPs, suboptimal policies can form local optima in policy space
[20]. This motivates the use of global search techniques such as EC, which are less
likely to become trapped in local optima, and a hybrid such as CURL uses EC to di-
rectly explore policy space. CURL also uses bootstrapping to perform small changes
to the policy by hill-climbing on the Q(s, a) values. Hill-climbing has often been com-
bined with GAs to form memetic algorithms with faster convergence than a pure GA,
and this was a motivation for CURL’s design. However, if bootstrapping is used then
optimal policies are not necessarily stable: that is, an optimal policy might not attract
the algorithm [20]. Thus a hybrid might not be able to find an optimal policy even if it
escapes all local optima. The possible instability of optimal policies does not necessar-
ily render such hybrids useless, because there might be optimal or near-optimal policies
that are stable, but convergence is a very desirable property.

Fortunately, it is easy to show that if pl < 1 and the underlying EC algorithm is
convergent then so is CURL: if pl < 1 then there is a non-zero probability that no allele
is modified by the Q(s, a), in which case CURL behaves exactly like the EC algorithm.
This is not true of all hybrids (for example [9]). The GA used in the CURL instantiation
is convergent (to within some accuracy depending on the number of samples used),
because every gene in a new chromosome can potentially be mutated to an arbitrary
allele. Therefore the CURL instantiation is convergent.

2.3 Note

Ideally, we should now evaluate CURL on standard POMDPs from the literature, but
we shall postpone this for future work. The work in this paper is motivated by the
need to solve large, complex inventory control problems that do not succumb to more
traditional methods. In fact we know of no method in the inventory control literature
that can optimally solve our problem in a reasonable time (at least, the constrained
form of the problem: see below). We shall therefore test CURL on POMDPs from
stochastic inventory control. We believe that the problem we tackle has not previously
been considered as a POMDP, but we shall show that it is one.

3 POMDPs from Stochastic Inventory Control

The problem is as follows. We have a planning horizon of N periods and a demand for
each period t ∈ {1, . . . , N}, which is a random variable with a given probability density
function; we assume that these distributions are normal. Demands occur instantaneously
at the beginning of each time period and are non-stationary (can vary from period to
period), and demands in different periods are independent. A fixed delivery cost a is
incurred for each order (even for an order quantity of zero), a linear holding cost h is
incurred for each product unit carried in stock from one period to the next, and a linear
stockout cost s is incurred for each period in which the net inventory is negative (it is
not possible to sell back excess items to the vendor at the end of a period). The aim is
to find a replenishment plan that minimizes the expected total cost over the planning
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Rn−1 Rn

Qn Di+...+Dj

Bij

Sn

Fig. 3. The (R, S) policy

horizon. Different inventory control policies can be adopted to cope with this and other
problems. A policy states the rules used to decide when orders are to be placed and how
to compute the replenishment lot-size for each order.

3.1 Replenishment Cycle Policy

One possibility is the replenishment cycle policy (R, S). Under the non-stationary de-
mand assumption this policy takes the form (Rn, Sn) where Rn denotes the length of
the nth replenishment cycle and Sn the order-up-to-level for replenishment. In this pol-
icy a strategy is adopted under which the actual order quantity for replenishment cycle
n is determined only after the demand in former periods has been realized. The order
quantity is computed as the amount of stock required to raise the closing inventory level
of replenishment cycle n − 1 up to level Sn. To provide a solution we must populate
both the sets Rn and Sn for n = {1, . . . , N}. The (R, S) policy yields plans of higher
cost than the optimum, but it reduces planning instability [7] and is particularly appeal-
ing when items are ordered from the same supplier or require resource sharing [27].
Figure 3 illustrates the (R, S) policy. Rn denotes the set of periods covered by the nth
replenishment cycle; Sn is the order-up-to-level for this cycle; Qn is the expected order
quantity; Di + . . . + Dj is the expected demand; Bij is the buffer stock required to
guarantee service level α.

Though both RL and EC have been applied to a variety of inventory control prob-
lems, some of them POMDPs [31], neither seems to have been applied to this impor-
tant problem. There are more efficient algorithms which are guaranteed to yield op-
timal policies (under reasonable simplifying assumptions) so RL and EC would not
be applied to precisely this problem in practice. However, if we complicate the prob-
lem in simple but realistic ways, for example by adding order capacity constraints or
dropping the assumption of independent demands, then these efficient algorithms be-
come unusable. In contrast, RL and EC algorithms can be used almost without mod-
ification. Thus the problem is useful as a representative of a family of more complex
problems.
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Note that the inventory control term policy refers to the form of plan that we search
for (such as the (R, S) policy), whereas a POMDP policy is a concrete plan (such as
the (R, S) policy with given (Rn, Sn) values). We use the term in both senses but the
meaning should be clear from the context.

3.2 POMDP Model

The replenishment cycle policy can be modelled as a POMDP as follows. Define a state
to be the period n, an action to be either the choice of an order-up-to level or the lack
of an order (denoted here by a special action N), and a reward rn to be minus the total
cost incurred in period n. The rewards are undiscounted (do not decay with time), the
problem is episodic (has well-defined start and end states), the POMDP is nondetermin-
istic (the rewards are randomised), and its solution is a policy that is deterministic and
memoryless (actions are taken solely on the basis of the agent’s current observations).
This problem is non-Markovian but has an underlying MDP. Suppose we include the
current stock level (suitably discretised or approximated) in the state. We then have
the Markov property: the current stock level and period is all the information we need
to make an optimal decision. But the (R, S) policy does not make optimal decisions:
instead it fixes order-up-to levels independently of the stock level.

The problem is slightly unusual as a POMDP for two reasons. Firstly, all actions
from a state n lead to the same state n + 1 (though they have different expected re-
wards): different actions usually lead to different states. Secondly, many applications
are non-Markovian because of limited available information, but here we choose to
make it non-Markovian by discarding information for an application-specific reason: to
reduce planning instability. Neither feature invalidates the POMDP view of the prob-
lem, and we believe that instances of the problem make ideal benchmarks for RL and
EC methods: they are easy to describe and implement, hard to solve optimally, have
practical importance, and it turns out that neither type of algorithm dominates the other.

There exist techniques for improving the performance of RL algorithms on POMDPs,
in particular the use of forms of memory such as a belief state or a recurrent neural
network. But such methods are inapplicable to our problem because the policy would
not then be memoryless, and would therefore not yield a replenishment cycle policy.
The same argument applies to stochastic policies, which can be arbitrarily more efficient
than deterministic policies [28]: for our inventory problem we require a deterministic
policy. Thus some powerful RL techniques are inapplicable to our problem.

4 Experiments

We compare SARSA(λ), the NGA and CURL on five benchmark problems. The in-
stances are shown in Table 1 together with their optimal policies. Each policy is speci-
fied by its planning horizon length R and its order-up-to-level S, and the expected cost
of the policy per period is also shown, which can be multiplied by the number of periods
to obtain the expected total cost of the policy. For example instance (3) has the optimal
policy [159, N, N, 159, N, N, 159, . . .]. However, the policy is only optimal if the total
number of periods is a multiple of R, and we choose 120 periods as a common multi-
ple of R ∈ {1, 2, 3, 4, 5}. This number is also chosen for hardness: none of the three
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Table 1. Instances and their optimum policies

demand demand cost/ cost/120
# h s a mean std dev R S period periods

(1) 1 10 50 50 10 1 63 68 8160
(2) 1 10 100 50 10 2 112 94 11280
(3) 1 10 200 50 10 3 159 138 16560
(4) 1 10 400 50 10 4 200 196 23520
(5) 1 10 800 50 10 5 253 279 33480

algorithms find optimal policies within 108 simulations (a Mixed Integer Programming
approach also failed given several hours). We varied only the a parameter, which was
sufficient to obtain different R values (and different results: see below). We allow 29
different order-up-to levels at each period, linearly spaced in the range 0–280 at inter-
vals of 10, plus the N no-order option, so from each state we must choose between 30
possible actions. This range of order-up-to levels includes the levels in the optimum
policies for all five instances. Of course if none of the levels coincides with some order-
up-to-level in an optimal policy then this prevents us from finding the exact optimum
policy. But even choosing levels carefully so that the exact values are reachable does
not lead to optimal policies using the three algorithms.

As mentioned above, this problem can be solved in polynomial time because of its
special form, which is how we know the optimum policies. We therefore also gener-
ate five additional instances (1c,2c,3c,4c,5c) by adding an order capacity constraint to
instances (1,2,3,4,5) respectively, simply by choosing an upper bound below the level
necessary for the optimum policy. For each instance the 30 levels are linearly spaced
between 0 and 	0.8S
 (respectively 54, 89, 127, 156 and 223). This problem is NP-
hard and we know of no method that can solve it to optimality in a reasonable time. We
therefore do not know the optimum policies for these instances, only that their costs are
at least as high as those without the order constraints.

We tailored NGA and CURL for our application by modifying the mutation oper-
ator: because of the special nature of the N action we mutate a gene to N with 50%
probability, otherwise to a random order-up-to level. This biased mutation improves
NGA and CURL performance. We also tailored SARSA and CURL for our applica-
tion. Firstly, we initialise all state-action values to the optimistic value of 0, because
the use of optimistic initial values encourages early exploration [30]. Secondly, we ex-
perimented with different methods for varying ε, which may decay with time using
different methods. [3,16] decrease ε linearly from 0.2 to 0.0 until some point in time,
then fix it at 0.0 for the remainder. [30] recommend varying ε inversely with time or
the number of episodes. We found significantly better results using the latter method,
under the following scheme: ε = 1/(1 + ε′e) where e is the number of episodes so far
and ε′ is a fixed coefficient chosen by the user. For the final 1% of the run we set ε = 0
so that the final policy cost reflects that of the greedy policy (after setting ε to 0 we
found little change in the policy, so we did not devote more time to this purely greedy
policy).

Each of the three algorithms has several parameters to be tuned by the user. To simu-
late a realistic scenario in which we must tune an algorithm once then use it many times,
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Fig. 4. Instances (1,2,3,4,5)
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we tuned all three to a single instance: the middle instance (3) without an order capacity
constraint. For SARSA(λ) we tuned ε′, α, λ by the common method of hill-climbing in
parameter space to optimise the final cost of the evolved policy, restricted to λ values
{0.0, 0.1, . . . , 0.9, 1.0} and ε′, α values {0.1, 0.03, 0.01, 0.003, . . .}. This process led
to α = 0.003, ε′ = 0.001 and λ = 0.7. We chose NGA settings pc = pm = 0.5 and
P = S = 30 for each instance: performance was robust with respect to these parame-
ters, as reported by many GA researchers. To tune CURL we fixed the GA parameters
as above, set λ = 0, and applied hill-climbing to the remaining CURL parameters, re-
stricted to pl ∈ {1.0, 0.3, 0.1, 0.03, . . .}, to obtain α = 0.1, pl = 0.3. Using λ > 1
did not make a significant difference to performance (though it necessitated different
values for α and pl): it might be necessary for deterministic problems in which we do
not evaluate chromosome fitness over several simulations, but here we have S = 30
simulations per chromosome in which to perform bootstrapping so we use the more
efficient SARSA(0).

Figures 4 and 5 plots the performances of the algorithms on the instances. The
SARSA(λ) cost is an exponentially-smoothed on-policy cost (the policy actually fol-
lowed by the algorithm during learning). The NGA and CURL costs are those of the
fittest chromosome. All graph points are means over 20 runs. We use the number of
SARSA(λ) episodes or GA simulations as a proxy for time, and allow each algorithm
106 episodes or simulations. This slightly biases the results in favour of SARSA(λ):
one of its episodes takes approximately three times longer than a simulation because of
its eligibility trace. But there may be faster implementations of SARSA(λ) than ours so
we use this implementation-independent metric.

The graphs show that neither SARSA(λ) nor NGA dominates the other over all
instances, though SARSA(λ) is generally better (this might be caused by our choice
of instances). However, CURL is uniformly better than NGA, and therefore some-
times better than SARSA(λ) also. Previous research into EC and RL on POMDPS has
shown that neither dominates over all problems, but that EC is better on highly non-
Markovian problems, so we assume that the problems in which NGA beats SARSA(λ)
are highly non-Markovian. This implies that CURL is a very promising approach to
such POMDPs, though further experiments are needed to confirm this pattern.

It might be suspected that the biased mutation technique unfairly aids NGA and
CURL: but adding this technique to SARSA(λ) worsens its performance. Unlike RL
algorithms, EC algorithms can benefit from application-specific mutation and recombi-
nation operators, and these can also be used in CURL. The current CURL implementa-
tion uses a simple table-based representation of the POMDP, which is often the worst
choice [19], so we believe that there is a great deal of room for improvement.

5 Conclusion

Reinforcement Learning (RL) and Evolutionary Computation (EC) are competing ap-
proaches to solving POMDPs. We presented a new Cultural Algorithm (CA) schema
called CURL that hybridises RL and EC, and inherits EC convergence properties. We
also described POMDPs from stochastic inventory theory on which neither RL nor
EC dominates the other. In experiments a CURL instantiation outperforms the EC
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algorithm, and on highly non-Markovian instances it also outperforms the RL algo-
rithm. We believe that CURL is a promising approach to solving POMDPs, combining
EC and RL algorithms with little modification.

This work is part of a series of studies in solving inventory problems using systematic
and randomised methods. In future work we intend to develop CURL for more complex
inventory problems, and for more standard POMDPs from the Artificial Intelligence
literature.

Acknowledgement. This material is based in part upon works supported by the Science
Foundation Ireland under Grant No. 05/IN/I886, and under Grant No. 03/CE3/I405 as
part of the Centre for Telecommunications Value-Chain-Driven Research (CTVR). S.
A. Tarim and B. Hnich are supported by the Scientific and Technological Research
Council of Turkey (TUBITAK) under Grant No. SOBAG-108K027.

References

1. Arnold, D.V., Beyer, H.-G.: Local Performance of the (1+1)-ES in a Noisy Environment.
IEEE Trans. Evolutionary Computation 6(1), 30–41 (2002)

2. Becerra, R.L., Coello, C.A.C.: A Cultural Algorithm with Differential Evolution to Solve
Constrained Optimization Problems. In: Lemaı̂tre, C., Reyes, C.A., González, J.A. (eds.)
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Abstract. This paper presents a heuristic approach based on the POP-
MUSIC framework for solving large scale Multi Depot Vehicle Routing
Problems with Time Windows derived from real world data. A Vari-
able Neighborhood Search is used as the optimizer in the POPMUSIC
framework. POPMUSIC is a new decomposition approach for large scale
problems. We compare our method with a pure VNS approach and a
Memetic Algorithm integrated in a POPMUSIC framework. The com-
putational results show that the integration of VNS in the POPMUSIC
framework outperforms the other existing methods. Furthermore differ-
ent distance metrics for the decomposition strategies are presented and
the results are reported and analyzed.

Keywords: Vehicle Routing, Variable Neighborhood Search, Problem
Decomposition.

1 Introduction

In this paper we present a solution method based on the POPMUSIC framework
to efficiently solve real world problems of large scale. We used the Variable Neig-
borhood Search (VNS) as the heuristic optimizer in the framework. The contribu-
tion of this paper is twofold. First we propose an efficient integration of the VNS
in the POPMUSIC framework. The designed solution method is highly efficient
and outperforms the existing methods for solving large scale Multi Depot Vehicle
Routing Problems with Time Windows (MDVRPTW) published in Ostertag et
al. [13]. Second we design and analyze different metrics for the generation of sub-
problems. Decomposing a large scale real world routing problem - especially the
MDVRPTW - in several sub-problems is not trivial. A detailed numerical analysis
is provided to evaluate the promising decomposition strategies.

The MDVRPTW is a generalization of the Vehicle Routing Problem (VRP)
which is known to be NP-hard. Multiple depots as well as time windows are
added to the classical VRP in order to receive a more realistic model for the prob-
lems of modern carrier fleet companies. As the problem is NP-hard only small
instances can be solved to optimality in reasonable time. Therefore metaheuristic
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approaches are developed to provide good quality solutions at reasonable compu-
tational effort. Some of these metaheuristics scale incredibly well with problem
sizes of up to a couple of hundred customers, however only a few exist that can
be applied to large scale real world problems. Homberger and Gehring [8] show
that large instances of up to 1000 customers can be solved with their 2-phase
hybrid metaheuristic approach. An active guided evolution strategy by Mester
and Bräysy [12, 11] as well as a VNS approach by Kytöjoki et al. [9] were also
developed to solve instances of larger sizes. Alternative strategies like the POP-
MUSIC framework by Taillard and Voss [18] focus on intelligently decomposing
the problem into smaller sub-problems that are then solved sequentially by well
known methods. The decomposition phase is repeated iteratively. Flaberg et al.
[3] also successfully applied a decomposition strategy to solve a large scale news-
paper delivery problem. The MDVRPTW is up to now not so well studied. The
most recent developed methods for the problem at hand are the tabu search by
Cordeau et al. [2] and the VNS by Polacek et al. [15], however these methods
are only applied on instances of moderate size.

The remainder of the paper is organized as follows. The problem is explained in
detail in Section 2. Section 3 gives an overview of the VNS used as an optimizer.
The POPMUSIC framework is described in Section 4. In Section 5 the numerical
results are reported. In this section also different decomposition strategies are
analyzed. In the conclusion (Section 6) we summarize the results and provide
ideas for further research.

2 Problem Description

The real world problem considered in this paper was slightly modified so that
it can be considered as a MDVRPTW. Customers that could no be reached in
time, as well as a handful of backhauls were purged from the data set. Compared
to the well known Vehicle Routing Problem with Time Windows (VRPTW), the
MDVRPTW is extended by having more than one depot with different locations
and associated vehicle fleets. The MDVRPTW is defined on a complete graph
G = (V, A) where V = {v1, ..., vm, vm+1, ..., vm+n} is the vertex set and A =
{(vi, vj) : vi, vj ∈ V, i �= j} is the arc set. The n customers are represented by
vertices vm+1 to vm+n, while v1 to vm stand for the m depots. Several weights
are associated to each vertex vi ∈ V, i = m+1, ..., m+n. These weights represent
the demands di, the service times si, as well as the time windows [ei, li] which
are defined by the earliest ei and latest li possible start times for the service.
These time windows also apply to the depots (i = 1, ..., m) where they define
the opening hours of the depots. Each arc (vi, vj) is associated with a non-
negative travel time or cost. A vehicle fleet consisting of a total of K vehicles is
globally assigned to the m depots. The fleet is homogeneous and each vehicle is
characterized by a non-negative capacity D and a non-negative maximum route
duration T . Finally, the distribution of the vehicles over the depots is defined as
input data. The aim is to build K vehicle routes, each route starting from a depot
and returning back to the same depot, so that each customer i belongs to exactly
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one route and is serviced during its corresponding time window [ei, li]. Each
vehicle route has to satisfy the additional constraints of the maximal allowed
tour length T and vehicle capacity D. The objective considered in this paper is
to minimize the total distance traveled by all vehicles.

3 Variable Neighborhood Search

The VNS [6] used was derived from the work done by Polacek et al. [15] as it has
been successfully applied to MDVRPTW problem instances. Even though other
methods like TS, iterative local search, ACO or hill climbing may be interesting
to implement into the POPMUSIC framework we did choose the VNS because
the most recent VNS approaches outperformed other techniques for the Vehicle
Routing Problems see [4], [7] or [14] and especially [15]. The VNS consists of four
phases (construct initial solution, shaking, iterative improvement, acceptance
decision). Phases two to four are iteratively executed.

3.1 Construct Initial Solution

We use a modified Clarke and Wright Savings algorithm [1] to generate the
initial solution. Customers are assigned to empty routes with starting point
and endpoint at the closest depot. We then generate a sorted list according
to the savings value that can be realized when merging two partial routes. In
order to generate different starting solutions for the different runs a stochastic
component is introduced; with a probability of 0.9 the highest possible savings
value is realized. The algorithm terminates when no more routes can be feasible
merged. The constructed solution is the first incumbent solution within the VNS.

3.2 Shaking

A very important design decision for the VNS is the selection of the right neigh-
borhood structure in the shaking phase. A CROSS-Operator [17] as well as an
inverted CROSS operator are used to perturb the incumbent solution. The multi
depot feature of the real world problem is considered by defining on which routes
the CROSS-Operator is applied. Two different variants are realized. In the first
variant only routes belonging to the same depot may be changed. In the second
variant routes starting at different depots may be changed. In both of the men-
tioned variants the maximal allowed sequence length that may be changed by
the CROSS operator is defined between zero and five. An additional case is con-
sidered where the maximum allowed length is equal to the number of customers
in the route with the smaller number of customers of the two considered routes.
The two routes, on which the operator is applied, are selected at random.

3.3 Iterative Improvement

After the shaking phase each solution is improved by an iterative improvement
procedure. In this procedure a restricted 3-opt [10] is used as local search op-
erator. The operator is restricted to a maximum allowed sequence length of
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three customers. We realized a first improvement strategy, which means the
algorithm accepts the current solution as new incumbent solution as soon as
an improvement is found and restarts the iterative improvement procedure. A
special feature of real world problems is that customers are often on the same
geographic location (hospital, shopping mal, business centers,..) . For this fact
a restrictive sequence length is not useful. It can happen that more than five
customers have to be visited on the same day within the same shopping mal.
When these customers are on the same route the 3-opt operator has no effect.
We therefore allow within the 3-opt procedure to shift customers on the same
location without any restriction.

3.4 Acceptance Decision

The fitness evaluation function of a solution S follows the implementation of [2]
and [15]. The total travel time of the routes is denoted by c(S). The values q(S),
t(S) and w(S) respectively denote the total violation of load, duration and time
window constraints. The arrival time ai at each customer i is calculated and an
arrival after the end of the time window ai > li is penalized while an arrival
before the start of the time window ai < ei is allowed but generates a waiting
time. Each route is then checked for violations with respect to D and T as well
as the total violation of the time window constraints

∑n
i=1 max(0, ai − li). The

fitness function is defined by f(S) = c(S)+αq(S)+βt(S)+γw(S) where α, β and
γ are positive weights which are all set to 100 to strongly penalize infeasibility.

To overcome the problem of getting stuck in local optima, we sometimes allow
inferior solutions to be accepted. While better solutions are always accepted,
worse solutions are only allowed when two criteria are met. The first criterion
defines that we generally allow deteriorating solutions after a certain number of
unproductive iterations (105). If the limit of unproductive iterations is reached
the next generated solution with a deteriorating fitness value that fulfills the
second criterion is accepted. The second criterion defines the threshold value for
accepting a deteriorating solution. The threshold is defined by a ratio (in our
experiments 5%) of the best found solution so far to the current solution. The
counter that measures the unproductive iterations is set to zero as soon as a
deteriorating solution is accepted.

4 POPMUSIC

Taillard and Voss [18] propose the POPMUSIC framework for dealing with prob-
lems of large size. The basic concept of the framework is to decompose a pre-
calculated solution S into p parts s1, ..., sp. In the next step some of these parts
are aggregated into a sub-problem. An optimizer then tries to improve this sub-
problem. If parts and sub problems are well defined, every improvement of a sub
problem corresponds to an improvement of the whole solution S. The described
process is then repeated and different sub-problems are build and optimized.
The basic POPMUSIC framework is described in algorithm 1.
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Algorithm 1. Basic POPMUSIC framework
Input: Solution S composed of parts s1, ..., sp, parameter r
Set A ← ∅
while A �= {s1, ..., sp} do

Select seed part si /∈ A
Create a sub-problem Ri composed of the r parts si1 , ..., sir most related to si

Optimize Ri

if Ri has been improved then
Update S (and corresponding parts)
Set A = A \ {si1 , ..., sir}

else
Set A ← A ∪ {si}

end if
end while

4.1 POPMUSIC Customization

To apply POPMUSIC to the real world MDVRPTW problem at hand, it is
necessary to specify its principal components. We defined a part (s1, ..., sp) as a
specific route in the complete solution. Therefore the applied proximity measure
(relation - most related to si) needs to measure the distance between two routes
so that appropriate sub problems can be created. We examined two different ways
to measure proximity that will be explained in detail in the following subsections.

We therefore define a sub problem as a subset of r routes that can be treated
and solved like an independent MDVRPTW of desired size. We decided to set
r to 10 routes as the VNS provides good solutions in reasonable computation
time for problems of moderate size. This was also shown in [2, 15]. All resulting
sub problems are then improved by applying the VNS. The VNS terminates
either if an iteration limit is reached or the computational time exceeds a certain
threshold. Since the resulting sub-problems depend strongly on the selection of
the seed customer or part, seed parts are chosen in a systematic way.

4.2 Proximity Measures

We decided to test two different relatedness measures for potential parts of a new
sub-problem to see which will result in a better decomposition of the problem.
The two measures are different in the way the distance is measured, we measure
distance by travel time and through the use of trigonometric functions (the sweep
idea [5]). Furthermore we tried a total of eight different strategies to measure
proximity, that will be explained in detail in the following subsection. The three
measures based on the sweep idea are presented before the five measures based
on the distance.

Proximity Through Sweeping. This measure defines distance by the angle
between the centers of two routes. The centers of these two routes are defined as
the centers of gravity of all the customers in the according route. This concept
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Fig. 1. Measure SI (sweep with no restriction)

was also used in [16] and introduced in [17]. The angle α is than calculated
between these two centers, with the pivot point being the depot (Dseed) of the
seed route (Rseed).

Sweep with no restriction (SI)
The most basic way to apply this measure is without restricting the selection of
the routes that can be added to create the sub-problem. It is therefore created
by adding the routes with the smallest angle up to the maximum allowed sub-
problem size r. In order to allow some diversity in the creation of the sub problem
we use a probability of 0.1 that a selected route is rejected and cannot enter the
sub problem. The procedure is depicted in Figure 1.

Sweep with tight restriction (SII). The sweep selection of routes may be not
suitable to deal with multiple depots as it can happen that a route gets selected
even when a couple of other depots are in-between. We therefore restricted the
selection of routes that belong to another depot than the seed part in the follow-
ing way. Routes are still added with the smallest angle to the seed part, however
they are only added when one of the two following criteria is fulfilled.

1. The distance between the route to be added and the seed depot is smaller
than the distance between the two depots.

2. The route to be added is closer to the seed depot than to the original depot.

The procedure is depicted in Figure 2. Routes can only be selected in the grey
area, which is shown divided for each criterion.

Sweep with loose restriction (SIII). We relaxed the criteria of SII in a way
that routes to be added that belong to another depot may be selected when their
center of gravity does not lie behind the second depot (Dadd) by a certain angle β.

The procedure is depicted in Figure 3. Routes can only be selected in the grey
area.
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Fig. 2. Measure SII (sweep with tight restriction)

Fig. 3. Measure SIII (sweep with no restriction)

Proximity by Smallest Distance. In the second group of measures the eu-
clidian distance between two entities is used as proximity. Entities can be single
customers or all customers in a route. When a group of customers form an entity
then the center of gravity of these customers is used to calculate the distance.
The setups of the different strategies vary in the aggregation level as well as on
how customers are selected to join the sub-problem.

Distance between aggregated customers of routes (DI). In this strategy
the centers of gravities for each route define the entities and they are used for
distance calculations of the neighboring routes. All the distances between the seed
route (Rseed) and all possible other routes are computed and stored in a sorted list.
Then 75 % of the routes with the shortest distance to the seed route (Rseed) are
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combined. The missing routes are then added through the use of a roulette wheel
selection. Routes which are closer to the seed route have a higher probability of
being selected. Routes are selected as long as the sub-problem contains r routes.

The strategy is illustrated in Figure 4.

Fig. 4. Measure DI (distance between aggregated customers of routes)

Distance between single customers of routes (DII). Here we generate a
list containing the distances between all customers of a seed route and all other
remaining customers. The customers with the smallest distance are then added
to the sub-problem, however because a part is defined as a route we add the
complete route to the sub-problem. In total r − 1 routes are then added to the
sub problem. The procedure is depicted in Figure 5.

Distance between single customers of routes with restriction (DIII).
With the concept of strategy DII generated sub-problems in highly populated
regions like cities contain only routes in the same region. This happens because
distances are smaller on average in cities than in the country side. Therefore as
soon as a route contains a customer in a city, the sub-problem is always extended
with customers or routes in the same region. At the end the routes in the country
side cannot be combined reasonably. To overcome this structural drawback we
modified DII . Routes are still added by the smallest distance, however only one
route per customer in the seed route may be added until all other customers in
the seed route have added the same amount of routes.

Fig. 5. Measure DII (distance between single customers of routes)
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Distance between aggregated customers of the seed route and a single
customer (DIV ). Here we aggregated the customers in the seed part by calcu-
lating the centers of gravity of the route. Distances are than calculated between
these center and each remaining customer of the other routes. The sub-problems
are then build in standard manner. The procedure is depicted in Figure 6.

Fig. 6. Measure DIV (distance between aggregated customers of the seed route and a
single customer)

Distance between a single customer in the seed route and aggregated
customers of a random route (DV ). Distances are calculated between a
single customer in the seed route and the aggregated center of gravity of a
random route. It is therefore the opposite of DIV . The procedure is depicted in
Figure 7.

Fig. 7. Measure DV (distance between a single customer in the seed route and aggre-
gated customers of a random route)

5 Computational Experiments

5.1 Problem Characteristics

The problem considered originates from a large real world problem of an Austrian
logistics provider that operates two distribution centers (depots) in or near the
city of Vienna. The company serves from 700 to 2000 customers every day with



38 A. Ostertag, K.F. Doerner, and R.F. Hartl

Table 1. Problems size

Day 1 2 3 4 5 6 7 8 9 10

Size 1201 1180 1284 1305 1175 743 889 1095 1848 1709

Table 2. Comparison of algorithms

RPD RPD
Day PopMA VNS PopVNS PopMA / PopVns VNS / PopVns

10 3990.30 3900.22 3617.17 -9.35% -7.26%
11 4248.84 4337.41 4035.87 -5.01% -6.95%
12 4337.51 4308.20 4002.35 -7.73% -7.10%
13 4526.04 4641.33 4258.72 -5.91% -8.24%
14 4335.46 4383.96 4085.11 -5.77% -6.82%
22 2531.97 2592.75 2441.07 -3.59% -5.85%
23 3483.54 3627.22 3394.80 -2.55% -6.41%
24 3483.54 3354.47 3128.26 -10.20% -6.74%
25 6031.33 5855.59 5368.09 -11.00% -8.33%
26 5948.30 6344.28 5911.63 -0.62% -6.82%

avg. 4291.68 4334.54 4024.31 -6.17% -7.05%

a total number of 160 vehicles. Both depots are of equal size and the vehicle
fleet is equally split between them. We evaluated 2 weeks, each with 5 days
and customers between 743 and 1848 per day. Table 1 shows the number of
customers to be served for each day. The customers have large time windows,
some customers can be served in the morning between 8 and 12, some customers
can be served in the afternoon between 12 and 16 or during the whole day from
8 to 16.

5.2 Numerical Results

It was demonstrated in [13] that decomposition strategies like the POPMUSIC
framework are reasonable strategies to tackle large scale real world problems.
While the MA used in [13] provides limited possibilities of creating sub-problems,
especially in the inheritance of the individuals of a population to a newly de-
composed problem, the VNS allows for more flexibility to create them. The MA
uses a tournament selection method, a route based two-point crossover operator,
a stochastic local search procedure for mutation and a steady state fashion up-
dating of the population. It was used as the optimizer for the sub-problems that
are generated by clusters of routes, so that information stored in the population
can be taken from one subproblem to the next.

All the developed strategies were tested on Intel Pentium 640 ’Prescott’ 3,2
GHZ, 800 MHZ FSB, 2MB L2-Cache PCs. To study also the performance of our
solution methods for more than two depots, we extended the initial problem to
the three and four depot case. Ten independent runs with a computation time
of five hours for each run were performed for each depot setup and strategy
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Table 3. Results for two depots

measure RPD to VNS Rank

SI -6.62% 5
SII -6.62% 6

SIII -6.56% 7
DI -6.87% 2

DII -6.71% 4
DIII -6.85% 3
DIV -7.05% 1
DV -6.09% 8
MA -0.80% 9

V NS 0.00% 10

Table 4. Results for three depots

measure RPD to VNS Rank

SI -6.38% 4
SII -5.97% 7

SIII -6.45% 2
DI -6.14% 6

DII -6.17% 5
DIII -6.41% 3
DIV -6.91% 1
DV -5.70% 8

V NS 0.00% 9

Table 5. Results for four depots

measure RPD to VNS Rank

SI -5.86% 3
SII -5.17% 7

SIII -5.92% 2
DI -5.54% 5

DII -5.42% 6
DIII -5.78% 4
DIV -6.31% 1
DV -5.13% 8

V NS 0.00% 9

combination. The VNS as an optimizer turns out to be able to outperform the
MA [13] as an optimizer significantly. To be able to compare the two algorithms
the code of the MA was used to run on the same instances and on the same
machines. To present a fair comparison, the improved 3-opt used in the VNS
was integrated in the MA. The improved 3-opt for the real-world case is able to
shift customers on the same location regardless of the maximum allowed sequence
length. Table 2 shows the average percentage deviation for the MA (integrated in
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the POPMUSIC framework) and the VNS without decomposition compared to
the POPMUSIC VNS that uses the best performing proximity measure DIV . We
can only show the results for the two depot case, as the MA was not developed
for more than two depots. The VNS integrated in POPMUSIC improves the
average results compared to the MA integrated in POPMUSIC by 6.17 %.

5.3 Analysis of Proximity Measure

It can be seen that all of the tested measures perform significantly better than
the VNS without decomposition (see tables 3,4,5). Over all instances and depot
setups, DIV provided the best results, except for the small instances in the two
depot and four depot setup. It is closely followed by DIII which generated the
second best results as can be seen in the overview in table 6. Concerning the
sweep proximity measures SIII seems to work the best out of all tested sweep
measures. Furthermore it is interesting to point out that SIII seems to gain
efficiency when dealing with more depots. For the three and four depot case
SIII provides the second best results. However DIV provides also for the multi-
depot case (three and four depots) the best results.

The results for the two depot case are presented in table 3, table 4 shows the
results for the three depot case while table 5 shows the results for the four depot
case. It can be seen that improvements by 6.56 % to 7.05 % can be realized for
the two depot case when using POPMUSIC (see table 3). For the four depot case
improvements between 5.13 % to 6.31 % are possible (see table 5). The average
results over all depot cases are represented in table 6. It can be seen that the
distance based strategies DIV and DIII provides best results averaged on all the
different problem settings. However also the sweep based strategy SIII provides
almost similar results on average as DIII (see table 6).

Table 6. Results averaged over all depots

measure RPD to VNS Rank

SI -6.29% 4
SII -5.92% 7

SIII -6.31% 3
DI -6.18% 5

DII -6.10% 6
DIII -6.35% 2
DIV -6.76% 1
DV -5.64% 8

V NS 0.00% 9

6 Conclusion

In this paper we have shown that the POPMUSIC decomposition strategy that
uses a VNS as sub problem optimizer can solve large scale MDVRPTW. It is shown
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that the results provided by the existing MA can be improved by roughly 6.17 %
in the two depot setup. The results can be improved by 6.76 % over all instances
when using POPMUSIC and VNS in comparison to a pure VNS approach.

We presented a number of different ways to measure proximity in an environ-
ment with a large amount of customers and more than one depot in order to
decompose a large routing problem. The results show that the distance based
proximity measures provide the best results (especially strategy DIII and DIV ),
while properly implemented sweep based measures only work well when dealing
with a higher number of depots (especially strategy SIII). We want to point out
that the worst decomposing strategy presented performs still 5 % better than
using no decomposition at all. This leads to the assumption that decomposition
improves the solution quality when tackling large scale problems with current
state-of-the art methods and computers on the basis of the same runtime. The
POPMUSIC framework is easy to develop for large VRP instances and sub prob-
lem optimizers based on metaheuristic concepts and can easily be integrated to
further improve solution quality. Especially local search based concepts that
work with one incumbent solution, e.g. VNS or tabu search are suitable to be
used within the POPMUSIC framework.

In further research proximity measures for large scale problems with tight
time windows will be developed and studied.
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Abstract. A generalization of the well-known Vehicle Routing Problem
(VRP) has been developed toward tactical or strategic decision levels of
companies but not both. The tactical extension or Periodic VRP (PVRP)
plans a set of trips over a multiperiod horizon, subject to frequency con-
straints. The strategic extension is motivated by interdependent depot
location and routing decisions in most distribution systems. Low-quality
solutions are obtained if depots are located first, regardless the future
routes. In the Location-Routing Problem (LRP), location and routing
decisions are simultaneously tackled. The goal here is to combine the
PVRP and LRP into an even more realistic problem covering all deci-
sion levels: the Periodic LRP or PLRP. An evolutionary algorithm called
Memetic Algorithm with Population Management (MA|PM) is proposed
to solve large size instances of the PLRP. First, a population is randomly
generated. Every individual represents a feasible solution using the same
combination of visit days on each customers. The evolution is operated
by a memetic mechanism and the offsprings must satisfy a distance test
before entering the population. Information about better customer as-
signment to visit days is collected on the offsprings, and is used to create
a new population of solutions. The algorithm stops when a given number
of regenerations of the population is reached. The method is evaluated
on three sets of instances and solutions are compared to the literature on
particular cases such as one-day horizons (LRP) or one depot (PVRP).
This metaheuristic outperforms the previous method for the PLRP.

Keywords: Heuristic, Periodic Location-Routing Problem.

1 Introduction

Companies desiring to lower their expenses have to pay attention to their logis-
tics costs. Indeed, the latter often represent a large portion of their budget and
involve various decision levels. Among them, depot location and vehicle routing
are crucial choices. They are usually tackled separately to reduce the complex-
ity of the global problem. However, researches have shown that this strategy
often leads to suboptimal solutions [30]. The Location-Routing Problem (LRP)
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integrates these two decision levels. In general, the LRP is formulated as a de-
terministic node routing problem (i.e., customers are located on nodes of the
network), but a few authors have studied stochastic cases [15,6] and arc routing
versions [11,13]. Nevertheless, as shown in [20], most of the published papers
consider either capacitated routes or capacitated depots [2,33] but rarely both
except very recently [34,3,25,24,4,26].

Beside the strategic aspect of depot location, a focus on tactical decision such
as Vehicle Routing Problems (VRP) leads to consider some extensions. One of
these consists in integrating frequency constraints on visited customers over a
given multiperiod horizon. The resulting problem is known as periodic VRP
or PVRP, introduced in 1984 by Christofides and Beasley [8]. As for the LRP,
there exist arc-routing versions of the problem [9,14] but most published papers
consider a node routing version. The methods used to solve PVRP are mainly
heuristics [8,32,7]. A powerful approach is the tabu search algorithm proposed by
Cordeau et al. [10]. Very recently, Hemmelmayr et al. [12] developed a variable
neighborhood search heuristic leading to even better results on average.

As special case, the PVRP can also be viewed as a multidepot VRP (MD-
VRP). The latter is defined on a single day but instead of visiting the customers
from routes assigned to a single depot, the vehicles performs from one of the
set of depots. Thus, by considering the routing from each depot as the routing
from each period of the horizon, the statement of the MDVRP can be seen as
a particular PVRP. In such a case, exact methods are available [16,17,21] and
report optimal solutions on instances involving until 80 customers (asymmetric
problem).

The LRP and the PVRP have been combined in [29] for the first time into
an even more realistic problem: the periodic LRP or PLRP. The objective is to
determine the set of depots to open, the combination of service days to assign
to customers and the routes originating from each depot for each period of the
horizon, in order to minimize the total cost. In [29], the proposed method is a
metaheuristic. Each global iteration of the algorithm begins by considering the
entire set of customers within a single fictive day to determine a subset of depots
to open over the horizon. At this point, statistics on the edges appearing in that
LRP solution are recorded. The statistics are used to assign a combination of
service days to each customer, with respect to their required service frequency.
More precisely, the algorithm tries to gather in a same day customers having
a great chance to be successive in a route from a good PLRP solution. Then,
the remaining problem can be decomposed into independent MDVRP, one per
day. It is solved by the Randomized Extended Clarke and Wright Algorithm
proposed in [25]. A local search exchanges customers’ combination of service days
and the algorithm handles another MDVRP according to the new assignment.
This alternance performs until convergence occurs. Then, a new global iteration
begins with a diversification on the subset of open depots.

In this paper, the proposed method is a genetic based metaheuristic that
tries to take into consideration several decision levels. Each global iteration of
the algorithm begins by assigning a fixed combination of service days to each
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customer, with respect to their required service frequency, for the entire set of
individual (solution) from the population. During that global iteration, the evo-
lution is tackled by a memetic algorithm with population management scheme.
A local search on the assignment of a combination of visit days to customers
allows to record a possible better assignment of service days that would be used
in the next global iteration of the method.

The paper is organized as follows. The problem is defined in more details
in Section 2. Section 3 describes the framework of the proposed algorithm. The
performances of the method are evaluated in Section 4. Some concluding remarks
close the paper.

2 Problem Definition

The problem studied in this paper is defined on a horizon H composed of P
periods (days) and a complete, weighted and undirected network G = (V, E, C).
V is a set of nodes comprising of a subset I of m possible depot locations and
a subset J = V \I of n customers. The traveling cost between any two nodes i
and j is given by cij . A capacity Wi and an opening cost Oi are associated with
each depot site i ∈ I. Each customer j ∈ J has to be served a given number
of times s(j) during the horizon, and Combj is its set of allowed combinations
of service days. djlr is the demand of customer j on the day l of combination
r ∈ Combj . A set K of N identical vehicles of capacity Q is available over H .
A vehicle used at least once from a depot during the horizon incurs a fixed cost
F and it may perform one single route per day. The total number of vehicles Ti

used at depot i is the maximum number of routes performed from depot i over
H . It is a decision variable. Figure 1 illustrates the meaning of Ti.

Fig. 1. Example of the number of routes performed by depot on each day of the horizon

The following constraints must hold:

– each customer j must be served exclusively on each day l of exactly one of
the combination r ∈ Combj , by one vehicle and with the amount djlr ;

– the sum of the vehicles assigned to depots (Ti) not exceed N ;
– each route must begin and end at the same depot within the same day and

its total load must not exceed vehicle capacity;
– the total load of the routes assigned to a depot on any day l ∈ H must fit

the capacity of that depot.
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The total cost of a route includes the fixed cost F and the costs of traversed
edges (variable costs) on each day of the horizon. The objective is to find which
subset of depots should be opened, which combination of days should be assigned
to each customers and which routes should be performed, to minimize the total
cost (fixed costs of depots, plus total cost of the routes).

The PLRP is obviously NP-hard since it reduces to the well-known VRP when
m = 1 and |H | = 1. It is much more combinatorial than the VRP and therefore,
due to the size of the targeted instances, a metaheuristic is proposed. It is an
evolutionary approach in which successive populations of solutions are tackled by
a genetic scheme complemented by a local search (memetic algorithm). Further-
more, a population management based on a distance measure is implemented: a
solution is accepted only if its distance to the current population in not smaller
than a given threshold with respect to a cost measure. The next section describes
the algorithm more in details.

3 MA|PM for the PLRP

The PLRP involves three kinds of decisions. It would be very difficult and time-
consuming to search a neighborhood that simultaneously handles these decisions.
However, trying to keep a vision the more global as possible on the whole problem
is important. That is what is proposed in this paper.

Evolutionary algorithms have been successfully applied to vehicle routing
problems, especially the genetic algorithms hybridized with local search, also
called memetic algorithms (MA), [18,22]. Recently, Sörensen and Sevaux [31]
proposed a new form called MA|PM or memetic algorithm with population man-
agement. MA|PM is characterized by a small population Pop of PopSize individ-
uals, the improvement of new solutions by local search, and the replacement of
the traditional mutation operator by a distance-based population management
technique. Given a threshold ∆, a new solution is accepted only if its distance
to Pop is at least ∆. Otherwise, two options are conceivable: either the offspring
is mutated until its distance to Pop reaches the threshold [31], or it is simply
discarded [27]. These authors described also several dynamic control policies
for ∆.

MA|PM has already been applied to the Capacitated Arc Routing Problem
[27]. The results indicate that it converges faster than conventional memetic
algorithms. Applications to other routing problems have also been developed,
leading to very good results as on the production-distribution problem [5] or the
LRP [24].

Moreover, its general structure is simpler than other distance-based popula-
tion metaheuristics such as scatter search or path relinking, and it is quite easy
to upgrade an existing MA into an MA|PM.

The choice of MA|PM for the PLRP has been inspired by these promising
characteristics. The version studied here corresponds to the second option: chil-
dren that do not match the threshold are simply discarded. Section 3.1 presents
the structure of the chromosomes used, Section 3.2 explains the crossover phase,
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while Sections 3.3 and 3.4 respectively develop the local search and the popula-
tion management technique.

3.1 Chromosomes

A good representation of the solution into chromosome is crucial for the achieve-
ment of the method. In particular, it is important to design fixed length chro-
mosomes because they are required by most crossovers.

However, encoding information about the depots, the assignments of cus-
tomers (to service days and to a depot) and the order of deliveries to these
customers within a chromosome is not trivial.

That is why we have chosen to set a fixed combination of service days to
the customers for each individual from the population. A diversification on this
assignment will be tackled later on. Thus, we can use the idea proposed in [24] for
the LRP, in which the adopted chromosome encoding comprises a depot status
part DS and a customer sequence part CS (see Figure 2).

DS CS

index 1 2 3 4 … m 1 2 3 4 … 12 13 14 … 17 18 … n
value 13 0 1 18 0 8 20 15 16

closed depot 

1718 2 10 4 22

sequence of customers
assigned to depot 1, cut

open depot - sequence of into routes by the Split 
procedureassigned customers begins at

position 13

Fig. 2. Representation of an LRP solution as a chromosome

DS (depot status) is a vector of m numbers. DS(i) represents the status of
depot i indicating whether it is closed (zero) or opened (non-zero value). If it
is opened, DS(i) is the index in CS of the first customer assigned to depot i.
CS (customers sequence) contains the concatenation of the lists of customers
assigned to the considered service day, without trip delimiters. So, CS is a per-
mutation of customers and has a fixed length.

As we work on a periodic version of the problem, an individual becomes a set
of P chromosomes (one for each day of the horizon), taking care that the open
depots are the same in each DS vectors.

The fitness F (S) of an individual S is the total cost of the associated PLRP
solution. DS is used to deduce the cost of open depots and the list of customers
assigned to each depot. Each list can be optimally partitioned into trips using a
procedure called Split. This procedure was originally developed by Prins for the
VRP [22]. For a list of p customers, it builds an auxiliary graph Ga = (X, A, Z),
where X contains p + 1 nodes indexed from 0 to p, A contains one arc (i, j),
i < j, if a trip servicing customers Si+1 to Sj (included) is feasible in terms of
capacity. The weight zij of (i, j) is equal to the trip cost. The optimal splitting
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of the list corresponds to a min-cost path from node 0 to node p in Ga. For the
PLRP, we apply Split to the list of customers of each depot and on each day.

3.2 Selection of Parents and Crossover

To generate an individual, the first step is to select its two parents. The first
one comes from a binary tournament among the solutions of the population,
and the second one from a binary tournament on the whole population except
the first selected parent. Then, basically, for two parents A and B, and on each
day of the horizon, a one-point crossover is applied to the DS vectors of the
two parents and another one to their CS vectors. The crossover for DS works
like for binary chromosomes. The one for CS is adapted for permutations. The
offspring C receives the sub-sequence of A located before the cutting point. B is
then scanned from left to right, starting from the cutting point. The customers
not yet in C are copied in CS at the same position as in B to complete the
offspring. Once arrived at the end of B, if there are still some vacant positions
in CS, they are filled by non-inserted customers.

This operator may provide a chromosome corresponding to an infeasible so-
lution, especially because of the capacity constraints on the depots. Thus, each
child is tested and repaired in case of infeasibility. First of all, the repair proce-
dure checks if all customers are assigned to a depot by verifying that the value
1 (representing the first customer in CS) is in DS. It means that in the worst
case, all customers are assigned to a single depot. If DS(i) �= 1 for each i ∈ I
three possibilities are explored:

1. the first open depot i found not used during the considered day (depot
opened over the horizon but with no route on this day), if any exists, is
considered and DS(i) = 1;

2. otherwise, a closed depot i is opened and DS(i) = 1;
3. if all depots are already opened and used, a depot i is randomly chosen and

DS(i) = 1.

Then, the procedure looks for depots having a capacity violation. If one depot
is found, this means that too many customers are assigned to it. Therefore, the
algorithm scans backward the sequence of customers assigned to such a depot
and removes them one by one until the capacity constraint of the depot holds.
Removed customers are assigned to the first opened depot found having enough
remaining capacity. If none exists, its closest depot is not yet opened is used.

3.3 Local Searches for the PLRP

MA|PM works on a small population of high-quality solutions [31]. This quality
results from the application of a local search procedure on the offspring. For the
PLRP, a local search LS is applied on the solution deduced from the chromosome.
It is based on the three following neighborhoods:

– MOVE. One customer is shifted from its current position to another position,
in the same route or in a different route which may be assigned to the same
depot or not, provided capacities are respected.
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– SWAP. Two customers are exchanged. They may belong to the same route
or, if residual capacities allow it, to two distinct routes sharing one common
depot or not.

– OPT. This is a 2-opt procedure proposed in [25] and in which two non-
consecutive edges are removed, either in the same route or in two distinct
routes assigned to a common depot or not. When they belong to different
routes, there are various ways of reconnecting the trips. If they are from
different depots, edges connecting the last customers of the two considered
routes to their depot have to be replaced to satisfy the constraint imposing
that a route must begin and finish at the same depot. This neighborhood is
equivalent in the first case to the well-known 2-OPT move for the TSP [19].

LS executes the first improving move found in the three neighbourhoods (not
the best move) and stops when no such move can be found. Note that a depot can
only be opened by the crossover and not by these procedures. The assignment
to service day will be managed by the diversification phase.

LS must not be called systematically, to avoid a premature convergence and
also because it is time-consuming with its O(n2) neighborhoods on each day of
the horizon. In practice, it is applied to the offspring with a fixed probability pLS .

3.4 Population Management

The population management filters the entrance of the offspring in the pop-
ulation thanks to a distance measure. Because of the complexity of a PLRP
solution, the distance here is not measured in the solution space, but in the
objective space.

In MA|PM, a new solution T may enter the population Pop only if dPop(T ) ≥
∆, where ∆ is a given threshold. If ∆ = 0, the algorithm behaves like a tradi-
tional MA. ∆ > 0 ensures distinct solutions in Pop. If ∆ takes a large value,
most children-solutions are rejected and the MA spends too much time in un-
productive iterations. ∆ can be dynamically adjusted between such extremes to
control population diversity. Different control policies are suggested in [31]. In
our MA|PM, ∆ is initialized to a rather high value ∆max. If a series of MaxNbRej
successive rejections of the offsprings is reached, ∆ decreases until accepting a
new offspring in the population, but keeping the minimum value of ∆ equal
to ∆min. Then, ∆ remains constant until a new series of successive rejections
occurs. If a new best solution is found, ∆ is reset to ∆max.

The offspring, if accepted by the population management system described
above, replaces the worst chromosome in the current population.

3.5 Diversification

The mechanisms presented until now do not deal with the assignment of the
customers to service days. Though, this decision is very important to achieve
good results. A technique having a view over the horizon would improve to the
solution cost.
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Thus, a diversification search intends to reduce the routing cost of each child
from a population by finding a new combination of visit days to customers. A
move is performed if the best insertion cost of the customers in the days of the
new combination is lower than the cost to serve it at its current position. Of
course, the capacity constraints must hold to accept the move.

As each individual of a population must have the same assignment to service
days, the obtained solution is not included in Pop. However, if the solution is
the best one encountered during the evolution of this population, the resulting
information about the assignment is recorded.

Then, when a given number MaxNbNoAdd of children has already been
discarded by the population management, an effective diversification is made. It
refreshes the population by creating new individuals on the basis of assignment
to service days recorded during the evolution of the previous population.

3.6 Algorithm

Figure 3 gives an overview of the proposed method. The first assignment of each
customer j to a combination from Combj is set by gathering within a same
day customers having great chance to be successive in a route from the optimal
solution. Thus, we build a spanning tree on each period in accordance with the
possible combinations of visit days. In order to try to keep a balance over the
horizon, one customer is iteratively assigned to each day.

4 Computational Study

4.1 Instances

The proposed method is evaluated on three sets of randomly generated Euclidean
instances. The two first ones are made of 30 instances with a set of homogenous
capacitated vehicles and a set of possible capacitated depots. Their main char-
acteristics are the followings: number of depots m ∈ {5, 10}, number of clients
n ∈ {20, 50, 100, 200} vehicle capacity Q ∈ {70, 150} and number of clusters
β ∈ {0, 2, 3}. The case β = 0 corresponds in fact to a uniform distribution of
customers in the Euclidean plane. These instances in which all numbers are inte-
ger were generated as follows. For given choices of m, n, Q, and β, the customers’
locations are randomly chosen in the Euclidean plane, and the traveling costs
cij correspond to the distances, multiplied by 100 and rounded up to the nearest
integer. Each demand follows a uniform distribution in interval [10, 20].

To mimic a working week, the first set, especially generated for the PLRP, is
made of a 7-day cyclic horizon H with 2 idle days (Saturday and Sunday). The
visit frequency of the customers s(i) is between once and three times a week.
The allowed set of combinations of visit days comb(i) are given in Table 1 and
forbids visits on two consecutive days. The demand djlr of customer j on each
day l depends on the chosen service combination r. It varies with the number
of days separating two visits, but it can be pre-calculated. The demand over the
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1: BestCost := +∞
2: NbAcc := 0
3: NbRej := 0
4: NbGen := 0
5: Assign customers to service days by building a tree per day
6: repeat
7: NbGen = NbGen + 1
8: ∆ := ∆max

9: NbNoAdd := 0
10: GenPop(Pop) for a given assignment of customers to service days
11: repeat
12: Selection(A,B)
13: Crossover(A,B,C)
14: if random < pLS then
15: LS(C)
16: end if
17: Local Search on service days (C)
18: if cost(C) < BestCost then
19: BestCost := cost(C)
20: ∆ := ∆max

21: BestSoln := C
22: end if
23: if cost(C) < BestItCost then
24: Record the corresponding assignment to service days
25: end if
26: if dP (C) < ∆ then
27: NbRej := NbRej + 1
28: NbNoAdd := NbNoAdd + 1
29: else
30: NbRej:= 0
31: NbAcc := NbAcc +1
32: AddToPop(C)
33: ∆ := ∆max

34: end if
35: if NbRej > MaxNbRej then
36: ∆ := Max(∆min,∆ ∗ RedDelta)
37: end if
38: until NbNoAdd > MaxNbNoAdd
39: until NbGen > MaxNbGen
40: Return (BestSoln)

Fig. 3. MA|PM for the Periodic Location-Routing Problem

horizon is divided by the number of service days, leading to an average demand
by day. Then, for each service day l of a combination r, djlr is this average
demand multiplied by the number of days since the last service day. For the first
day of the combination, the djlr is the difference of the demand over the horizon
minus the demand served on each other day from the combination (

∑
k �=l djkr).
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Table 1. Allowed set of combinations of visit days

Frequency Combinations of visit days
1 Monday

Tuesday
Wednesday
Thursday

Friday
2 Monday - Wednesday

Monday - Thursday
Tuesday - Friday

3 Monday - Wednesday - Friday

The results obtained on these instances are compared with respect to the results
proposed for the first time on these instances in [29].

The second set contains LRP instances, created for our previousworks [23,25,26]
and may be downloaded at [28]. It is reused in this study to compare the perfor-
mances of proposed method with respect to the best-known results (BKR), ob-
tained when testing various methods with different parameters.

Finally, the third set comprises 30 instances for the PVRP available at [1]. The
original set has 32 instances, but 2 are discarded by the authors because they
contain customers having the same visit frequency but not the same combination
of visit days. The horizon is made of P periods and the demand is equal in each
service day. The fleet size is limited to k and each vehicle has a capacity Q. The
number of customers n ranges from 20 to 417. The traveling costs are equal to
the Euclidean distances (not rounded). The performances of our algorithm are
compared with the best-known results (BKR) on these instances.

4.2 Implementation, Parameters and Algorithms Compared

The proposed algorithm is coded in Visual C++ and has been tested on a Dell
Latitude D420, with an Intel Centrino Duo 1.2 GHz, 1 GB of RAM and running
Windows XP.

The following parameters have been selected after a preliminary testing phase,
in order to provide the best average solution values: PopSize = 25+(n+m)/10,
MaxNbRej= 5, MaxNbNoAdd= (n+m)/3, P1 = 0.35, ∆max corresponds to the
average cost of an edge in the complete graph, ∆min = ∆max/10, RedDelta =
0.8 and the maximal number of global regenerations MaxNbGen= 4|H |.

4.3 Discussion of Results

In the following tables, each line corresponds to an instance or a subset of in-
stances having the same characteristics. Costs indicate the average value of the
objective function on the subset and times T are given in seconds. The columns
reported as BKR are the average of the best-known results of the instances. On
LRP and PVRP instances, they come from the respective websites [28,1]. On
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Table 2. Results on the Periodic Location-Routing Problem

IM MAPM
n m Cost CPU Cost CPU Gap
20 5 78882.00 0.63 77969.75 0.35 -1.37
50 5 168027.63 6.55 155608.63 3.01 -7.19
100 5 282062.67 52.45 264635.17 33.90 -6.11
100 10 266575.17 117.72 269634.33 40.48 1.62
200 10 449690.33 950.66 470604.83 754.85 5.34
Average 226.00 166.70 -1.93

PLRP instances, IM column corresponds to the results obtained by the iterative
metaheuristic proposed in [29]. The gaps are the deviation in percentage between
each method and BKR or IM taken as reference.

First set. Table 2 provides a comparison between the proposed MA|PM and
our earlier iterative metaheuristic (IM) detailed in [29] on the 30 PLRP instances
from the first set. In IM, each global iteration of the algorithm begins by consid-
ering the entire set of customers within a single fictive day to determine a subset
of depots to open over the horizon and allocates each customer to a combination
of service days. Then, the remaining problem is an MDVRP per day. It is solved
by using our Randomized Extended Clarke and Wright Algorithm (RECWA)
for the LRP [25].

The results show that the proposed method outperforms the IM, with an
improvement of 1.93% of the cost on average, while the CPU time is divided
by almost 2 (IM was executed on a Dell PC Optiplex GX260, with a 2.4 GHz
Pentium 4, 512 MB of RAM and Windows XP). It is even able to reduce the
total cost up to 23% on particular instance in comparison with the already known
solutions.

The very good performances are especially noticeable on small and middle size
instances. With up to 100 customers and 5 depots, the average improvement is
getting around 5.5%. However, when the number of depots increase to 10, the
results are not so relevant. A 7% decrease of the cost can be reach with 100
customers, but the gaps becomes mainly in favor to IM on most of the instances.

These observations confirm the importance on the choice of depots and the
proposed MA|PM seems to hardly manage that point with respect to IM. Notice
that in IM the depot location is the first step of the algorithm while in MA|PM
the first decision is made on the allocation of the customers to service days.

Second set. Table 3 gives a comparison on the 30 LRP instances from the
second set, between the results from the proposed MA|PM and the best-known
solutions (BKR) available on [28], obtained during the testing of various meta-
heuristics dedicated to the LRP.

The table shows that the proposed metaheuristic is able to provide good
solutions even on other problems than the one it is dedicated to. The gap with
BKS is small (2.89% on average when the best method on this problem [26], is
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Table 3. Results on the Location-Routing Problem

BKS MAPM
n m Cost Cost CPU Gap
20 5 45086.75 45167.75 0.06 0.16
50 5 74112.63 76068.38 2.57 2.45
100 5 199164.67 205676.50 42.95 3.19
100 10 238544.00 251136.33 49.15 4.88
200 10 420029.50 432663.00 1019.45 3.01
Average 223.00 2.89

at 0.5%). Some best-known solutions are reached, especially on small instances
but even on one with 50 customers.

The CPU time is multiplied by two in comparison with another MA|PM
(executed on a Dell PC Optiplex GX260, with a 2.4 GHz Pentium 4, 512 MB
of RAM and Windows XP) especially developed for the LRP, that has a gap
with the BKR at 1.1%. However, the parameters used in this study are kept
unchanged for all problems, but they can be tuned to provide more convenable
solutions. Note also that it is able to provide a total cost 6.4% better than the
MA|PM for the LRP on an instance with 100 customers and 10 depots.

The gap never rises above 6% except on 3 instances and surprisingly, the num-
ber of available depots does not seem to affect a lot the quality of the solution.

Table 4. Results on the Periodic Vehicle Routing Problem

BKS MAPM
I n k P Q Cost Cost CPU Gap
1 50 3 2 160 524.61 559.39 0.94 6.63
2 50 3 5 160 1322.87 1357.40 4.08 2.61
3 50 1 5 160 524.61 677.18 0.63 29.08
4 75 5 5 140 835.43 921.02 3.09 10.24
5 75 6 10 140 2027.99 2135.52 14.84 5.30
6 75 1 10 140 836.37 890.97 4.31 6.53
7 100 4 2 200 826.14 848.02 14.73 2.65
8 100 5 5 200 2034.15 2124.36 55.09 4.43
9 100 1 8 200 826.14 856.78 5.88 3.71
10 100 4 5 200 1595.84 1727.25 39.78 8.23
12 163 3 5 140 1195.88 1271.75 107.70 6.34
13 417 9 7 2000 3511.62 — — —
14-16 20-56 2 4 20-40 1897.56 1897.56 2.48 0.00
17-20 40-184 4 4 20-60 4486.68 4530.70 232.33 1.81
21-22 60-114 6 4 20-30 3227.58 3382.28 41.80 4.60
24-26 51 3 6 20 3753.31 3932.90 2.86 4.80
27-29 102 6 6 20 22600.18 24721.01 24.42 9.37
30-32 153 9 6 20 77891.89 89822.04 98.08 15.35

Average 56.81 6.58
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Third set. Table 4 provides a comparison on the PLRP instances from the third
set, between the results obtained by the proposed MA|PM and the best-known
solutions (BKR) available from [1]. When no solution appears in the table, the
algorithm does not succeed in finding a solution compatible with the fleet size.

Gaps are larger on average on PVRP instances showing how the periodic
aspect is hard to deal with. However, the results remain good with a gap around
5% in comparison with the best methods especially designed for the PVRP
[10,12]. The cost are also at 5% larger on average than BKR on instances with
up to 5 periods. Note also that even if the PVRP has not been as studied as
VRP, the first works on this topics appeared 30 years ago and many papers
have been published on this problem since that time. Furthermore, the proposed
method is not especially designed for PVRP but for much more combinatorial
ones and the required CPU time is almost the same as for the other algorithms
while taking decisions from several levels.

5 Conclusion

In this paper, a new metaheuristic for the Location Routing Problem (LRP) with
both capacitated depots and vehicles is presented. The method is an evolutionary
algorithm called memetic algorithm with population management (MA|PM).
It is a genetic method hybridized with local search techniques and a distance
measure to control the population, plus a diversification search which manages
the period aspect. The method has been tested on three sets of small, medium
and large scale instances, and compared to other heuristics on various kind of
instances such as one-day horizons (LRP) or one depot (PVRP). The solutions
obtained show that this algorithm is able to find good solutions and outperform
the previous algorithm dedicated to the PLRP.
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Abstract. This contribution presents a new memetic algorithm for con-
tinuous optimization problems, which is specially designed for applying
intense local search methods. These local search methods make use of
explicit strategy parameters to guide the search, and adapt these param-
eters with the purpose of producing more effective solutions. They may
achieve accurate results, at the cost of requiring high intensity, making
more difficult their application into a memetic algorithm. Our memetic
algorithm approach assigns to each individual a local search intensity
that depends on its features, by chaining different local search applica-
tions. With this technique of search chains, at each stage the local search
operator may continue the operation of a previous invocation, starting
from the final configuration reached by this one. The proposed memetic
algorithm integrates the CMA-ES algorithm as their local search opera-
tor. We compare our proposal with other memetic algorithms and evolu-
tionary algorithms for continuous optimization, showing that it presents
a clear superiority over the compared algorithms.

1 Introduction

It is now well established that hybridisation of evolutionary algorithms (EAs)
with other techniques can greatly improve the efficiency of search [1,2]. EAs
that have been hybridised with local search techniques are often called memetic
algorithms (MAs) [3,4,5]. One commonly used formulation of MAs improvement
the new member of the population using a local search (LS) method, with the
aim of exploiting the best search regions gathered during the global sampling
done by the EA. That allow to design MAs for continuous optimisation (MACOs)
that obtain very accuracy solutions in these type of problems [6].

For function optimization problems in continuous search spaces, an important
difficulty must be addressed: solutions of high precision must be obtained by
the solvers. MAs comprising efficient local improvement processes on continuous
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domains (continuous LS methods) have been presented to deal with this problem
[6]. In this paper, they will be named MACOs (MAs for continuous optimization
problems).

Most well-known continuous LS algorithms make use of explicit strategy pa-
rameters (e.g., step sizes) to guide the search. Generally, they adapt these param-
eters with the purpose of increasing the likelihood of producing more effective
solutions. Because of their explicit parameter adaptation, these algorithms may
require a substantial number of evaluations to achieve adequate styles of traver-
sal of solution space to follow certain paths leading to precise final solutions.
We call these local search intense local search methods. For this behaviour, the
usual hybridization model is not adequate enough to these intense continuous LS
algorithms, because the total function evaluations invested by the LS operator
may become too high, hindering to obtain profitable synergetic effects between
the EA and the LS algorithm.

In this contribution, we present a MACO model specially designed to incor-
porate intense continuous LS methods as LS operators. Our proposal applies the
local search with an adaptive intensity, exploiting with higher intensity the most
promising individuals. To adapt the LS intensity, our proposal can apply the
LS operator several times over the same individual, using a fixed LS intensity,
creating LS chains.

With this technique of LS chains, an individual resulting from a LS invocation
can later become the initial point of a subsequent LS application, using the final
strategy parameter values achieved by the former as its initial ones. In this way,
the continuous LS method may adaptively fit its strategy parameters to the
particular features of these zones. In our study, we use CMA-ES [7] as intense
continuous LS algorithm, which stands out as an excellent local searcher.

This contribution is set up as follows. In Section 2, we present different aspects
of intense local search and it is described the CMA-ES algorithm. In Section 3,
we present the concept of LS chain and how it can be applied to improve the
integration with intense continuous local searches. In Section 4, we present an
experimental study to compare our proposal with other algorithms proposed in
the literature. Finally, in Section 5, we provide the main conclusions of this work.

2 Intense Continuous Local Search Algorithms and
CMA-ES

In his pioneer work on MACOs, Hart [6] demonstrated that the choice of contin-
uous LS algorithm affects the performance of MACOs significantly on a variety
of benchmark problems with diverse properties.

Most well-known continuous LS algorithms make use of explicit strategy pa-
rameters (e.g., step sizes) to guide the search. Generally, they adapt their pa-
rameters, in such a way that the moves being made may be of varying sizes,
depending on the success of previous steps, with the purpose of increasing the
likelihood of producing more effective solutions. Due to their explicit parameter
adaptation, these continuous LS algorithms may require high LS intensity values
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to adapt their strategy parameters to the local topography of the search areas
being refined. They are called intense continuous LS algorithms.

The integration of intense continuous LS algorithms into MACOs arises as a
research area particularly attractive, because, nowadays, there are advanced in-
tense continuous LS algorithms that stand out as formidable local searchers. The
covariance matrix adaptation evolution strategy (CMA-ES) [7,8] is one of them.
CMA-ES was originally introduced to improve the LS performance of evolution
strategies. Even though CMA-ES even reveals competitive global search perfor-
mances [9], it has exhibited effective abilities for the local tuning of solutions. At
the 2005 Congress of Evolutionary Computation, a multi-start LS metaheuristics
using these method, called L-CMA-ES [10], was one of the winners of the real-
parameter optimization competition [11,12]. Thus, investigating the behaviour
of CMA-ES as LS component for MACOs deserves much attention.

In CMA-ES, not only is the step size of the mutation operator adjusted at
each generation, but so too is the step direction in the multidimensional problem
space, by a covariance matrix whose elements are updated as the search proceeds.
In this work, we use the (µW , λ) CMA-ES model. For every generation, this al-
gorithm generates a population of λ offspring by sampling a multivariate normal
distribution:

xi ∼ N
(
m, σ2C

)
= m + σNi(0, C) for i = 1, · · · , λ,

Where the mean vector m represents the favourite solution at present, the so-
called step-size σ controls the step length, and the covariance matrix C determines
the shape of the distribution ellipsoid. Then, the µ best offspring are used to recal-
culate the mean vector, σ and m and the covariance matrix C, following equations
that may be found in [7] and [9]. The default strategy parameters are given in [9].
Only the initial m and σ parameters have to be set depending on the problem.

It can be interpreted any evolution strategy that uses intermediate recombi-
nation as a LS strategy [7]. Thus, since CMA-ES is extremely good at detecting
and exploiting local structure, it turns out to be a particularly reliable and
highly competitive EA for local optimization [10]. Also, it can be described as
an intense continuous LS algorithm, because, as noted by Auger, Schoenauer
and Vanhaecke [13]: “CMA-ES may require a substantial number of time steps
for the adaptation of the covariance matrix”.

3 MACOs Based on Local Search Chains

Due to the potential of the intense continuous LS algorithms, it becomes inter-
esting to build MACO models with them. These MACOs should be specifically
designed to accomplish two essential aims:

– The intense continuous LS algorithm should be provided with sufficient LS
intensity to make their correct operation possible.

– The MACO should ensure that a profitable synergy between the continuous
LS algorithm and the EA is possible.
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In this section, we propose a MACO approach conceived to attain these two
objectives. It is a steady-state MA model that employs the concept of LS chain
to adjust the LS intensity assigned to the intense continuous LS method. In
particular, our MACO handles LS chains, throughout the evolution, with the
objective of allowing the continuous LS algorithm to act more intensely in the
most promising areas represented in the EA population. In this way, the con-
tinuous LS method may adaptively fit its strategy parameters to the particular
features of these zones.

In Section 3.1, we introduce the foundations of steady-state MAs. In Section
3.2, we present the concept of LS chain. In Section 3.3, we propose a MACO
approach that handles LS chains with the objective of make good use of intense
continuous LS methods as LS operators. Finally, in Section 3.4, we present an
instance of our MACO model that uses CMA-ES as continuous LS operator.

3.1 Steady-State MAs

In steady-state GAs [14] usually only one or two offspring are produced in each
generation. Parents are selected to produce offspring and then a decision is made
as to which individuals in the population to select for deletion in order to make
room for the new offspring. Steady-state GAs are overlapping systems because
parents and offspring compete for survival.

Although steady-state GAs are less common than generational GAs, Land
recommended their use for the design of steady-state MAs (steady-state GAs
plus LS) because they may be more stable (as the best solutions do not get
replaced until the newly generated solutions become superior) and they allow
the results of LS to be maintained in the population. So, steady-state MAs
integrate global and local search more tightly than generational MAs [15]. This
interleaving of the global and local search phases allows the two to influence each
other.

3.2 Local Search Chains

In steady-state MAs, individuals resulting from the LS invocation may be for a
long time latter selected to be replaced. At this point, we propose to chain an
LS algorithm invocation and the next one as follows:

The final configuration reached by the former (strategy parameter val-
ues, internal variables, etc.) is used as initial configuration for the next
application.

In this way, the LS algorithm may continue under the same conditions achieved
when the LS operation was previously halted, providing an uninterrupted connec-
tion between successive LS invocations, i.e., forming a LS chain. Figure 1 shows an
example of LS chain formed by a LS algorithm with only one associated strategy
parameter, p.

Two important aspects that were taken into account for the management of
LS chains are:
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Fig. 1. Example of LS chain. px is the value for the strategy value, pi+1 is the final
parameter value reached when it started with a value of pi, and p0 is its default value

– Every time the LS algorithm is applied to refine a particular chromosome, it
is applied a fixed LS intensity, that will be called LS intensity stretch (Istr).
In this way, a LS chain formed throughout napp LS applications and started
from solution s0 will return the same solution as the application of the con-
tinuous LS algorithm to s0 employing napp · Istr fitness function evaluations.

– After the LS operation, the parameters that define the current state of the
LS processing are stored along with the reached final individual (in the
steady-state GA population). When this individual is latter selected to be
improved, the initial values for the parameters of the LS algorithm will be
directly available.

In this work, we argue that a promising approach to adapt the LS intensity
assigned to intense continuous LS algorithms is using MACOs that allow LS chain
to grow throughout the evolution depending on the quality of the search regions
being visited, with the aim of acting more intensely in the most promising areas.
In this way, the real LS intensity assigned to the continuous LS algorithm may be
adaptively determined throughout the run and depends on two crucial choices:

– The way the solutions are selected to apply the LS operator to them.
– The replacement scheme used by the steady-state GA.

The designer of the steady-state GA is responsible for the second election,
whereas the first one should be undertaken during the design of the MACO
scheme.

3.3 A MACO Model That Handles Local Search Chains

In this section, we propose a MACO model (see Figure 2) with the following
main features:

1. It is a steady-state MA model.
2. It ensures that a fixed and predetermined local/global search ratio is always

kept. With this policy, we easily stabilise this ratio, which has a strong
influence on the final MACO behaviour, avoiding an excessive exploitation.
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3. It favours the enlargement of those LS chains that are showing promising
fitness improvements in the best current search areas represented in the
steady-state GA population. In addition, it encourages the activation of in-
novative LS chains with the aim of refining unexploited zones, whenever the
current best ones may not offer profitability. The criterion to choose the in-
dividuals that should undergo LS is specifically designed to manage the LS
chains in this way (Steps 3 and 4).

1. Generate the initial population.
2. Perform the steady-state GA throughout nfrec evaluations.
3. Build the set SLS with those individuals that potentially may be refined

by LS.
4. Pick the best individual in SLS (Let’s cLS to be this individual).
5. if cLS belongs to an existing LS chain then
6. Initialise the LS operator with the LS state stored together with cLS .
7. else
8. Initialise the LS operator with the default LS state.
9. Apply the LS algorithm to cLS with an LS intensity of Istr (Let’s cr

LS to be
the resulting individual).

10. Replace cLS by cr
LS in the steady-state GA population.

11. Store the final LS state along with cr
LS .

12. If (not termination-condition) go to step 2.

Fig. 2. Pseudocode algorithm for the proposed MACO model

The proposed MACO scheme defines the following relation between the steady-
state GA and the intense continuous LS method (Step 2): every nfrec number of
evaluations of the steady-state GA, apply the continuous LS algorithm to a selected
chromosome, cLS, in the steady-state GA population. Since we assume a fixed L

G

ratio, rL/G, nfrec may be calculated using the equation nfrec = Istr
1−rL/G

rL/G
, where

nstr is the LS intensity stretch (Section 3.2). We recall that rL/G is defined as the
percentaje of evaluations spent doing local search from the total assigned to the
algorithm’s run.

The following mechanism is performed to select cLS (Steps 3 and 4):

1. Build the set of individuals in the steady-state GA population, SLS that
fulfils:
(a) They have never been optimised by the intense continuous LS algorithm,

or
(b) They previously underwent LS, obtaining a fitness function improvement

greater than δmin
LS (a parameter of our algorithm).

With this mechanism, when the steady-state GA finds a new best so far indi-
vidual, it will be refined immediately. In addition, the best performing individual
in the steady-state GA population will always undergo LS whenever the fitness
improvement obtained by a previous LS application to this individual is greater
than the δmin

LS threshold.
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3.4 Memetic Algorithm with LS Chaining and CMA-ES

In this section, we build an instance of the proposed MACO model (Figure 2),
which applies CMA-ES (Section 2) as intense continuous LS algorithm. It will
be called MA-LSCh-CMA. Next, we list the main features of this algorithm:

Steady-state GA. It is a real-coded steady-state GA [16] specifically designed
to promote high population diversity levels by means of the combination of
the BLX-α crossover operator with a high value for its associated parameter
(α = 0.5) and the negative assortative mating strategy [17], in combination with
the replacement strategy. Diversity is favoured as well by means of the BGA
mutation operator [18]. This combination of selection parents and replacement
strategy let achieve an adequate trade-off between exploration and exploitation,
th In the MA literature, keeping population diversity while using LS together
with an EA is always an issue to be addressed, either implicitly or explicitly
[19,20].

CMA-ES as Continuous LS algorithm. MA-LSCh-CMA follows the MACO
approach, presented in Section 3.3, to handle LS chains, with the objective of
tuning the intensity of CMA-ES, which is employed as intense continuous LS
algorithm (Section 2). The application of CMA-ES for refining an individual,
Ci, is carried out following the next guidelines:

– Ci becomes the initial mean of distribution (m).
– The initial σ value is half the distance of Ci to its nearest individual in

the steady-state GA population (this value allows an effective exploration
around Ci).

CMA-ES will work as local searcher consuming Istr fitness function evalu-
ations. Then, the resulting solution will be introduced in the steady-state GA
population along with the current value of the covariance matrix, the mean of
the distribution, the step-size, and the variables used to guide the adaptation of
these parameters (B, BD, D, pc and pσ). Latter, when CMA-ES is applied to this
inserted solution, these values will be recovered to proceed with a new CMA-
ES application. When CMA-ES is performed on solutions that do not belong
to an existing chain, default values, given in [9], are assumed for the remaining
strategy parameters.

Parameter setting. For the experiments, MA-LSCh-CMA applies BLX-α with
α = 0.5. The population size is 60 individuals and the probability of updating
a chromosome by mutation is 0.125. The nass parameter associated with the
negative assortative mating is set to 3. The value of the L

G ratio, rL/G, was set
to 0.5, which represents an well-balanced choice. Finally, a value of 1e-8 was
assigned to the δmin

LS threshold.
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4 Experiments

We have carried out different experiments to assess the performance of MA-
LSCh-CMA. In order to do this, in this section, we detail the test functions and
the experimental setup and statistical methods that were used for this experi-
mental study.

This section is structure as following: In Section 4.1 it is presented the test
functions applied for the experiments. In Section 4.2 there are presented the of
the experiments. In Section 4.3 analyses the influence of the LS intensity stretch
in our proposal. In Section 4.4 it is studied the convenience of the LS chaining.
In Section 4.4, we compare our proposal with other modern metaheuristics with
the L-CMA-ES and in section 4.5 with the DEahcSPX algorithms. Finally, in
Section 4.6, they are shown the numerical results (average error) obtained by
each one of the algorithms considered in this Section.

4.1 Test Functions

The test suite that we have used for different experiments consists of 20
benchmark functions chosen from the set designed for the special session on
real parameter optimisation organised in the 2005 IEEE congress on evolution-
ary computation (CEC2005). We have considered only the multimodal functions
(F6-F25) from the CEC2005 test suite; because we are particularly interested in
analysing its behaviour with complicated test functions. It is possible to consult
in [11] the complete description of the functions. Also, we have considered the
dimension 30, because we want to focus our study on the most dificult problems.

4.2 Experimental Setup and Statistical Analysis

The experiments have been done following the instructions indicated in the doc-
ument associated to the competition. The main characteristics are:

– Each algorithm is run 25 times for each test function, and the error average
of the best individual of the population is computed.

– The study has been made with dimensions D = 30.
– The maximum number of fitness evaluations that we allowed for each algo-

rithm to minimise the error was 10, 000 ·N , where N is the dimension of the
problem.

– Each run stops either when the error obtained is less than 10−8, or when the
maximal number of evaluations is achieved.

We have carried out the experimental study of MA-LSCh-CMA and the other
algorithms following these guidelines in order to make possible its comparison
with the results of all the other algorithms involved in the competition (their
results are available in the proceedings of the congress).

To analyse the results we have chosen to use non-parametric tests because it
has been proven that in this benchmark the parametric tests cannot be applied
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with security [21]. In particular, we have considered two alternative methods
based on non parametric tests to analyse the experimental results, previously
applied in comparisons of EAs [21]:

– Application of the Iman and Davenport’s test and the Holm’s method as
post-hoc procedure. The first test is used to see whether there are significant
statistical differences among the algorithms in certain group. If differences
are detected, then Holm’s test is employed to compare the best algorithm
(control algorithm) against the remaining ones.

– Utilization of the Wilcoxon matched-pairs signed-ranks test. Using this test,
the results of two algorithms may be directed compared.

In [21] these statistical tests are explained in detail.

4.3 Influence of the LS Intensity Stretch

In our first empirical study, we investigate the influence of Istr on the per-
formance of MA-LSCh-CMA. In particular, we analyse the behaviour of this
algorithm when different values for this parameter are considered (Istr = 100,
500, and 1000).

First, it is applied the Iman-Davenport tests at the 5% level, Table 1 shows
the results.

Table 1. Results of the Iman-Davenport’s test with different Istr values

Iman-Davenport value Critical value Sig. differences
1,17 2,77 No

From Table 1, we may extract an important conclusion: MA-LSCh-CMA ex-
hibits a low sensitivity degree to the value selected for Istr . We have chosen a
particular value for Istr , in order to allow the incoming study of our proposal
and the comparison with other EA models to be easily understandable.

Figure 3 shows the average rankings obtained by the MA-LSCh-CMA in-
stances with different Istr values on the test functions for the different dimen-
sions. The height of each column is proportional to the ranking, the lower a
column is, the better its associated algorithm is. In order to study these results,
we may see that Istr = 500 is the best choice, so it is the selected value.

4.4 Studying the Behaviour of the Proposed MACO Model

In this section, we have performed two different experiments, in order to inves-
tigate the behaviour of the proposed MACO model.

Comparison with a Standard MACO. First, we want to check if the LS
chain offers an improvement over a standard MACO using a CMA-ES as its
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Fig. 3. Rankings obtained by MA-LSCh-CMA instances with different Istr values

LS method, which will be denoted as S-MACO. The basic difference between
S-MACO and MA-LSCh-CMA is that the former always selects the best per-
forming individual in the steady-state GA population as the one to be improved
by CMA-ES, which starts from default values for its strategy parameters and
consumes ILS evaluations. It has been tested S-MACO with three different val-
ues for ILS were investigated: 100, 500, and 1000, obtained that 1000 is the best
value for ILS . We should point out that S-MACO fits the L

G ratio to 0.5, such
as MA-LSCh-CMA does.

So, we have compared MA-LSCh-CMA (Istr = 500) with S-MACO with ILS =
1000, using Wilcoxon’s test. Table 2 summarizes the results of this procedure,
where the values of R+ and R− (associated to MA-LSCh-CMA) of the test are
specified (the lowest ones, which correspond to the best results, are highlighted
in bold face), together with the critical values.

We clearly notice that MA-LSCh-CMA obtains better results than S-MACO
(the R− value is lower than the R+ one). But in addition, the statistical test
indicates that these improvements are statistically significant (because the R−
value is lower than the critical value).

Comparison with a Restart Local Search Algorithm In this section, we
carry out the comparison of MA-LSCh-CMA with a restart CMA-ES, called

Table 2. S-MACO versus MA-LSCh-CMA using Wilcoxon’s test (p-value = 0.05)

R+ R− Critical value Sig. differences?
(S-MACO) (MA-LSCh-CMA)

168 42 52 Yes
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Table 3. L-CMA-ES versus MA-LSCh-CMA (Wilcoxon’s test with p-value = 0.05)

R+ R− Critical value Sig. differences?
(L-CMA-ES) (MA-LSCh-CMA)

165 45 52 Yes

L-CMA-ES [10] because both algorithms invoke CMA-ES instances that specif-
ically emphasise the local refinement abilities of this algorithm. Table 3 has the
results of the comparison of these two algorithms using the Wilcoxon’s test.

MA-LSCh-CMA exhibits overall better performance than L-CMA-ES, there-
fore, the work of the proposed hybridization method outperforms the one of the
pure restart local search strategy.

4.5 Comparison with State-of-the-Art MACOs

In a recent publication, it has been presented a MACO model, called DEahcSPX
[22], that combines differential evolution with a quick continuous LS method.
DEahcSPX was compared with other MACO instances proposed in the litera-
ture, and they found that their proposal was superior to the majority of them.
Thus, we assume that DEahcSPX is currency the most outstanding representa-
tive of the state-of-the-art MACOs.

In this section, we undertake the comparative analysis among DEahcSPX
and MA-LSCh-CMA using Wilcoxon’s test. Table 4 contains the results of this
statistical test.

The results of MA-LSCh-CMA show higher quality than the ones of DEahc-
SPX. In addition, the superiority is statistically significant. Thus our proposal
has turned out to be very competitive with state-of-the-art MACOs.

Then, we may highlight that MA-LSCh-CMA arises as one of the most promi-
nent algorithm for global optimization over continuous spaces, by two important
search processes simultaneously:

– The steady-state GA induces a scattered search promoting population di-
versity.

– The proliferation of long LS chains in the best regions becomes suitable to
obtain adequate accuracy levels, letting also to search in alternative regions.

4.6 Results of Experiments

We present in this section the results of our proposal and the differents algorithms
used into the comparisons. That allow to compare them with other algorithms

Table 4. DEahcSPX versus MA-LSCh-CMA (Wilcoxon’s test with p-value = 0.05)

R+ R− Critical value Sig. differences?
(DEahcSPX) (MA-LSCh-CMA)

169,5 40,5 52 Yes
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Table 5. Average Errors by each algorithms in the benchmark applied

Test MA-LSCh S-MACO DEahcSPX
Functions CMA

F6 1.191003e+1 2.732782e+1 1.000000e-9
F7 8.871392e-4 2.067364e-3 1.163264e-3
F8 2.027016e+1 2.086726e+1 2.094711e+1
F9 7.827714e-9 8.374473e-9 1.000000e-9
F10 1.838684e+1 7.243991e+1 9.449920e+1
F11 4.350834e+0 9.017085e+0 2.921885e+1
F12 7.690185e+2 1.462644e+3 2.956616e+4
F13 2.344814e+0 2.282783e+0 2.365826e+0
F14 1.268192e+1 1.253313e+1 1.279216e+1
F15 3.080000e+2 3.160001e+2 3.506300e+2
F16 1.363134e+2 1.719942e+2 1.294508e+2
F17 1.345630e+2 1.427101e+2 2.048724e+2
F18 8.156512e+2 8.265035e+2 9.060900e+2
F19 8.163714e+2 8.237708e+2 9.061617e+2
F20 8.157765e+2 8.284801e+2 9.065054e+2
F21 5.120000e+2 5.120000e+2 5.000000e+2
F22 5.258481e+2 5.043677e+2 9.120960e+2
F23 5.341643e+2 5.341645e+2 5.341641e+2
F24 2.000000e+2 2.000000e+2 2.000000e+2
F25 2.108472e+2 2.092819e+2 2.105413e+2

using the same benchmark functions. Table 5 shows for each algorithm used its
average error with the experimental setup indicated into Section 4.2. It has been
remarked in bold type the lower average error for each function.

5 Conclusions

This work presents a new hybridization model specially designed to integrate
intense continuous LS methods that need a high intensity. In the proposal
model, the continuous LS algorithm is applied with higher intensity in the
most promising solutions. It is proposed a MACO algorithm called MA-LSCh-
CMA that employs the CMA-ES algorithm using the previous hybridization
model.

The proposed MA-LSCh-CMA has been compared, following guidelines rec-
ommended for the CEC 2005 special session on real-parameter optimization,
with other state-of-the-art EAs for continuous optimizations. Our proposal
present significant improvements other them.

Other important conclusion is that the new hybridization model opens the de-
sign of new MACOs using efficiently a category of local search methods, intense
continuous LS methods, that until now could not be easily integrated for requir-
ing a high intensity. The design of new MACOs for other intense LS algorithms
using the concept of LS chains will be studied as future work.
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21. Garćıa, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study
on the cec 2005 special session on real parameter optimization. Journal of Heuris-
tics (in press, 2008)

22. Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local
search. In: IEEE Transactions on evolutionary Computation (in press, 2008)



Incremental Particle Swarm-Guided Local

Search for Continuous Optimization

Marco A. Montes de Oca1, Ken Van den Enden2, and Thomas Stützle1
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Abstract. We present an algorithm that is inspired by theoretical and
empirical results in social learning and swarm intelligence research. The
algorithm is based on a framework that we call incremental social learn-
ing. In practical terms, the algorithm is a hybrid between a local search
procedure and a particle swarm optimization algorithm with growing
population size. The local search procedure provides rapid convergence
to good solutions while the particle swarm algorithm enables a com-
prehensive exploration of the search space. We provide experimental evi-
dence that shows that the algorithm can find good solutions very rapidly
without compromising its global search capabilities.

1 Introduction

Many algorithms that have been successfully used for solving optimization prob-
lems can be thought of as being a collection of agents that interact with each
other and with the environment. In fact, this mental imagery has been used
to design some of them. Some examples are genetic algorithms [1], ant colony
optimization algorithms [2], and particle swarm optimization algorithms [3]. Fol-
lowing this same approach, we present an algorithm that is inspired by results
in social learning and swarm intelligence research. The algorithm is based on
a multiagent learning framework that we call incremental social learning [4].
The multiagent scenario used for the design of the proposed algorithm is the
following: A growing population of agents that can learn both individually and
socially explores its environment in order to maximize the group’s well-being.
The strategy used by the agents is to use their social learning skills when they
become part of the population and when learning individually is either too costly
or deemed unproductive.

Technically speaking, the algorithm presented in this paper is a hybrid be-
tween the well-known Powell’s direction set method [5] and a particle swarm
optimization algorithm with growing population size [4]. Powell’s method is
used as an agent’s individual learning mechanism. If the local topography of
the objective function (from an agent’s perspective) allows it, this mechanism
improves candidate solutions without any information exchange between agents.
The particle swarm velocity- and position-update rules, which allow the global

M.J. Blesa et al. (Eds.): HM 2008, LNCS 5296, pp. 72–86, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Algorithm 1. Incremental social learning
/* Initialization */
t ← 0
Initialize environment Et

Initialize primogenial population of agents Xt

/* Main loop */
while Stopping criteria not met do

if Agent addition schedule or criterion is not met then
Xt+1 ← ilearn(Xt,Et) /* Individual learning */

else
Create new agent anew

slearn(anew,Xt) /* Social learning */
Xt+1 ← Xt ∪ {anew}

end if
Et+1 ← update(Et) /* Update environment */
t ← t + 1

end while

exploration of the search space, play the role of the agents’ social learning mech-
anism. Together, these components form an incremental particle swarm-guided
local search algorithm for solving continuous optimization problems (Section 3).

We compare the performance of the proposed algorithm with that of other four
algorithms (Section 4). The proposed algorithm exhibits the fast convergence of
Powell’s method with good global search capabilities (Section 5).

2 Incremental Social Learning

In previous work, we introduced a multiagent learning framework, called incre-
mental social learning, that combines elements of social and individual learning
in order to speed up learning and to allow scalability [4]. Social learning is a term
that refers to the class of mechanisms that allow the transmission of knowledge
between individuals without the use of genetic material [6,7]. Individual learning,
on the other hand, is a process that lets an individual acquire knowledge about its
environment by interacting directly with it and without any social influence [8].
Applying social learning ideas to the multiagent learning problem is appealing
because learning from others effectively gives agents a shortcut to adaptive infor-
mation that otherwise would be expensive to acquire [9]. The framework is called
incremental because it is based on a growing population of agents that adapts
incrementally to the final multiagent environment. When a new agent is added
to the population, it learns socially from more experienced agents and learns
individually once it is part of it. This strategy is inspired by the fact that, in
nature, newborn individuals are particularly favored by social learning because
it allows them to learn many skills very rapidly from the adult individuals that
surround them [10]. The algorithmic structure of the incremental social learning
framework is outlined in Algorithm 1.
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At the beginning, the environment and the primogenial population of agents
are initialized. An agent addition schedule is used to control the rate at which
agents are added to the environment. If no agents are to be added, the agents
in the current population learn individually by directly interacting with the
environment. If a new agent is scheduled to be part of the population, it learns
socially from a subset of the agents in the population before it is added. The
environment is then updated (if needed) and the cycle is repeated until a stopping
criterion is satisfied.

The learning process starts with a small number of agents because this reduces
the interference caused by the co-existence of multiple learning agents. Agents
are added according to a problem-dependent schedule in order to create time
delays that allow agents that are already part of the population to learn from
the environment and to have something to teach to newcomers. When a new
agent learns socially, it saves itself the effort required to learn individually what
others already have. Incrementally growing the population size is also useful for
allocating the minimum number of agents required to solve a particular problem.

3 Incremental Particle Swarm-Guided Local Search

The incremental social learning framework, although conceived for tackling mul-
tiagent learning problems, can also be used for designing population-based op-
timization algorithms. This is because, as we said in Section 1, the multiagent
metaphor is usually useful for thinking about how this kind of algorithms work.
In [4], a particle swarm optimization algorithm with growing population size
(IPSO) was designed as an instantiation of the incremental social learning frame-
work. In IPSO, individual learning is not implemented; instead, the algorithm
comprises vertical and horizontal social learning mechanisms. Vertical social
learning is a pattern of knowledge transmission between individuals of differ-
ent generations while horizontal social learning happens between individuals of
the same generation [11]. In IPSO, vertical social learning occurs when a new
particle is added to the swarm and horizontal social learning is used instead of
individual learning. IPSO exhibits a good solution quality vs. time trade-off since
it finds solutions of at least the same quality than a particle swarm optimization
algorithm with constant population size in fewer objective function evaluations.

Here we present an extension of IPSO that includes an individual learning
mechanism. Individual learning is implemented as a local search procedure to
simulate a particle’s self-improvement process. The addition of an individual
learning mechanism is justified not only from a practical point of view but also
from a theoretical one. Indeed, since social learning is cheaper than individual
learning, it is usually assumed to be always advantageous [9]. However, it has
been argued that relying only on socially acquired knowledge is not always the
best strategy [12]; instead, individuals should devote some of their time and
energy to learn individually or to innovate [9].

As IPSO, the proposed algorithm is based on the particle swarm optimiza-
tion algorithm in which particles (i.e., potential solutions to an optimization
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problem) move in the search space with a certain velocity. Each particle is
attracted toward its own previous best position (with respect to an objective
function) and toward the best position found by the particles in its neighbor-
hood. Neighborhood relations are usually given in advance through a population
topology which can be defined by a graph G = {V, E}, where each vertex in V
corresponds to a particle in the swarm and each edge in E establishes a neigh-
bor relation between a pair of particles. The velocity and position updates of a
particle i over dimension j are as follows

vt+1
i,j = χ · [vt

i,j + ϕ1 · U1 · (pt
i,j − xt

i,j) + ϕ2 · U2 · (lti,j − xt
i,j)] , (1)

and
xt+1

i,j = xt
i,j + vt+1

i,j , (2)

where vt
i,j and xt

i,j are the particle’s velocity and position at time step t respec-
tively, pt

i,j is the particle’s best position so far, lti,j is the best position found by
the particle’s neighbors, ϕ1 and ϕ2 are two parameters, U1 and U2 are two uni-
formly distributed random numbers in the range [0, 1), and χ is a constriction
factor that is used in order to avoid an “explosion” of the particles’ velocity.
Clerc and Kennedy [13] found the relation χ = 2k/

∣∣∣2 − ϕ −
√

ϕ2 − 4ϕ
∣∣∣ , where

k ∈ [0, 1], and ϕ = ϕ1 + ϕ2 > 4, to compute it.
The local search procedure employed in the proposed algorithm is the well-

known Powell’s direction set method [5] using Brent’s technique [14] as the aux-
iliary line minimization algorithm. The decision of using Powell’s method as the
local search procedure is based on performance considerations. The proposed
algorithm calls repeatedly the local search procedure and thus an efficient one
was needed. In this sense, Powell’s method quadratic convergence can be very
advantageous if the objective function is locally quadratic [15].

The last component of the proposed algorithm is the vertical social learning
mechanism which is implemented as a rule that moves the new particle’s previous
best position from its initial random location in the search space to one that is
closer to the previous best position of a particle that serves as a “model” to
imitate. The rule is applied in a component-wise fashion as follows

p′new,j = pnew,j + U · (pmodel,j − pnew,j), (3)

where p′new,j is the new particle’s updated previous best position, pnew,j is the
new particle’s original previous best position, pmodel,j is the model’s previous
best position and U is a uniformly distributed random number in [0, 1).

The combination of the local search procedure and the particle swarm opti-
mization algorithm with growing population size, as sketched in Algorithm 2,
produces an incremental particle swarm-guided local search algorithm whose
operation is illustrated in Figure 1.

The proposed algorithm is designed for taking advantage of features that the
objective function may have. For example, if the objective function is convex
and separable, it should be optimized in a single local search run without the
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Algorithm 2. Incremental Particle Swarm-Guided Local Search
Input: Objective function f and maximum number of iterations tmax

/* Initialization */
Create initial particle p1 and add it to the set of particles P which is initially empty
Initialize position vector p1.x to random values within the search range
Initialize velocity vector p1.v to zero
Set p1.pb = p1.x

/* Main Loop */
Set t = 0 and k = 1
repeat

/* Individual learning */
for i = 1 to k do

Improve pi .pb through a local search procedure
end for

/* Horizontal social learning */
for i = 1 to k do

Move pi .x using Eqs. 1 and 2
if f(pi .x) is better than f(pi .pb) then

Set pi .pb = pi .x
end if

end for

/* Population growth and vertical social learning */
if Agent addition criterion is met then

Create particle pk+1 and add it to the set of particles P
Initialize position vector pk+1.x using Eq. 3
Initialize velocity vector pk+1.v to zero
Set pk+1.pb = pk+1.x
Set k = k + 1

end if
Set t = t + 1
Set sol = argmin

pi∈P
f(pi.pb)

until f(sol) is good enough or t = tmax

need of using the exploration capabilities provided by the particle swarm algo-
rithm. Similarly, if the objective function has a few local optima, starting with
only one particle ensures the minimal use of function evaluations for the explo-
ration of the space. However, the objective function may also have features for
which local search and small initial populations are ineffective. For example, if
an objective function had large plateaus, the local search procedure would return
with no solution improvement after having wasted several function evaluations.
Under these circumstances, the algorithm would start making progress (thanks
to the exploration capabilities of the particle swarm component) until a critical
population size is reached.
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(b) Growth and vertical social learning
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(c) Individual learning
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(d) Horizontal social learning

Fig. 1. The incremental particle swarm-guided local search algorithm at work. In Fig-
ure (a), a particle is randomly placed in the search space. Immediately after, the first
round of individual learning (local search) is run, moving the particle to, or close to, a
local minimum. This is followed by a horizontal learning round (a normal PSO move)
that does not have any effect in a swarm of one particle (the particles’ velocity are
initialized to zero). In Figure (b), the size of the population is increased. The vertical
social learning rule (Eq. 3) is used to place the new particle. In Figure (c), the second
iteration of the algorithm begins by running a round of individual learning. In Fig-
ure (d), through a round of horizontal learning, particles can move and discover more
promising areas of the search space. The algorithm continues intertwining individual
and social learning procedures until a stopping criterion is satisfied.

4 Experimental Setup

The performance of the incremental particle swarm-guided local search algorithm
(labeled IPSOLS) is compared to that of the following algorithms:

1. A traditional particle swarm optimization algorithm with constant popula-
tion size (labeled PSO). Three population sizes of 10, 100 and 1000 particles
are used.

2. An incremental particle swarm optimization algorithm as described in Sec-
tion 3 (labeled IPSO). In [4], IPSO proved to work well with a fast agent
addition schedule. Accordingly, we use a fast particle addition schedule in
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Table 1. Benchmark optimization problems

Name Definition Range

Ackley −20e−0.2
√

1
n

∑n
i=1 x2

i − e
1
n

∑n
i=1 cos(2πxi) + 20 + e [-32,32]n

Rastrigin 10n +
∑n

i=1 (x2
i − 10 cos(2πxi)) [-5.12,5.12]n

Rosenbrock
∑n−1

i=1 [100(xi+1 − x2
i )

2 + (xi − 1)2] [-30,30]n

Expanded Schaffer
ES(x) =

∑n−1
i=1 S(xi, xi+1) + S(xn, x1), where

[-100,100]n

S(x, y) = 0.5 +
sin2 (

√
x2+y2)−0.5

(1+0.001(x2+y2))2

Schwefel 418.9829n +
∑n

i=1 −xi sin(
√

|xi|) [-500,500]n

Sphere
∑n

i=1 x2
i [-100,100]n

which a new particle is added every iteration (this schedule is also used in
IPSOLS). The maximum size of the swarm is set to 1000 particles. Whenever
a new particle is added, the particle that serves as model to imitate is the
best of the swarm.

3. A hybrid particle swarm optimization algorithm with local search (labeled
PSOLS). It is a constant population size particle swarm algorithm in which
the particles’ previous best positions undergo an improvement phase (via
Powell’s method) before the velocity update rule is applied. Three population
sizes of 10, 100 and 1000 particles are used.

4. A random restart local search algorithm (labeled RLS). Every time the local
search procedure (Powell’s method) converges, it is restarted from a newly
generated random solution. The best solution found so far is considered to
be the output of the algorithm.

All particle swarm-based algorithms (PSO, IPSO, PSOLS and IPSOLS) are
run with two population topologies: a fully connected topology, in which each
particle is a neighbor to all others including itself, and the so-called ring topology,
in which each particle has two neighbors apart from itself. In the incremental
algorithms, the new particle is randomly placed within the topological structure.
Other parameter settings are ϕ1 = ϕ2 = 2.05 and χ = 0.7298.

Powell’s method has also a number of parameters to be defined. The so-called
tolerance, used to stop the procedure once a very small difference between two
solutions is detected, is set to 0.01. In case such a difference is not found, the
procedure is stopped after a maximum number of iterations. In our experiments,
this parameter is set to 10. Other settings were explored but no significant dif-
ferences in the results were found. Finally, different step sizes (used for the line
minimization procedure) were explored. The values tried for this parameter were
0.1, 1, 10, 20, and 33% of the length of the corresponding search range.

A set of six benchmark functions are used in our experiments. Their mathe-
matical formulation and search ranges are listed in Table 1. In all cases, we used
their 100-dimensional instantiations (i.e., n = 100).
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Our data is based on 100 independent runs of up to 106 function evaluations
each. In each run, all benchmark functions (except Schwefel’s) were randomly
shifted within the specified range. Particles or trial points outside the search
range were forced to stay within by putting them on the boundary.

5 Results

The distribution of the solution quality obtained by the compared algorithms
after 106 function evaluations is shown in Figure 2. These results correspond to
the case in which all particle swarm-based algorithms use a ring topology and the
local search step size is equal to 20% the length of the search range. In [16], the
reader can find the complete set of results, including those from the statistical
significance tests performed on the algorithms’ output data1. The algorithms
without a local search component are placed on the left side of each plot. This
arrangement reveals that the algorithms with a local search component find
solutions of equal or better quality than the algorithms without it. The use of
a local search component also makes the algorithms more robust to changes in
the population topology, that is, the algorithms with a local search component
do not show a significant change in their performance if a different topology is
used. Only PSO and IPSO are affected by a change in the population topology.
For example, the PSO algorithm with 10 particles finds better solutions with the
ring topology than with the fully connected topology while the opposite happens
if larger populations are used. In any case, regardless of the topology used, the
algorithms with local search outperform those without it.

IPSOLS (at the center of all plots) performs at least as well as the other
particle swarm-based algorithms with local search. In three problems (Expanded
Schaffer, Schwefel, and Rastrigin), IPSOLS obtains better solutions than all
other algorithms. With Ackley’s function, IPSOLS, PSOLS and RLS obtain
comparable results. With Rosenbrock’s function, IPSOLS and PSOLS with a
population of 10 particles obtain the best results. It is important to note that
even after 105 function evaluations, the only algorithm that consistently finds
high-quality solutions to all our benchmark problems is IPSOLS.

Figure 3 shows the development over time of the median solution quality
obtained by the compared algorithms. In order to make the plots more readable,
we consider only the algorithms that obtained the best results after 106 function
evaluations. These plots show more clearly the effects of the incremental and
socially guided use of local search procedures. As expected, IPSOLS exhibits
the same performance as RLS during the first 104 function evaluations. This
happens because IPSOLS starts, just as RLS does, performing a local search
from a random initial solution. Once the first local search procedure stops making
progress, IPSOLS and RLS start differentiating. The beneficial effects of relying
on socially acquired information are specially clear in the results obtained for
Ackley, Rastrigin, Expanded Schaffer, and Schwefel’s problems.

1 Unless otherwise noted, all our statements are supported by statistical evidence.
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(c) Rosenbrock
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(d) Expanded Schaffer
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(f) Sphere

Fig. 2. Boxplots showing the distribution of the solution quality obtained by the com-
pared algorithms after 106 function evaluations. These results correspond to the case
in which all particle swarm-based algorithms used a ring topology. The numbers next
to the labels indicate the population size used.

The results obtained while solving the Sphere problem show clearly that start-
ing with one single particle is beneficial if the objective function is separable and
convex. In this case, as can be seen in the plots, IPSOLS and RLS have exactly
the same performance. This is so because a single run of the local search pro-
cedure is able to find the optimal solution with no extra algorithmic overhead.
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Fig. 3. Development of the solution quality over time (median values). These results
correspond to the case in which all particle swarm-based algorithms used a ring topol-
ogy. The numbers next to the labels indicate the population size used.

The difference between IPSOLS and RLS is that IPSOLS is able to adapt and
cope with the difficulties posed by the features of other objective functions.

All the algorithms that contain Powell’s method as an algorithmic component
are affected by the step size of the subsidiary line minimization algorithm (in
our case, Brent’s algorithm). Figure 4 shows the median solution quality devel-
opment over time for different step sizes using RLS. As can be seen in the plots,
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the actual effect of the step size depends on the objective function. In our study,
the greatest differences are seen on multimodal test problems (Ackley, Rastri-
gin, Expanded Schaffer, and Schwefel) while there is practically no difference on
unimodal functions (Rosenbrock and Sphere). This result suggests that, on mul-
timodal problems, large step sizes allow the local search procedure to “jump”
over local optima, which effectively increases the chance of finding good quality
local optima. The downside of this behavior is that if the step size parameter is
set to the wrong value, a poor performance can be obtained.

6 Related Work and Discussion

IPSOLS can be seen as a population of agents with the capability of learning by
themselves and from others. In order to obtain the greatest reward, individuals
must use a strategy that allows them to intertwine their two modes of learning in
a productive way. In IPSOLS, individual learning is preferred over social learning.
Agents learn socially only when individual learning is either too costly or deemed
unproductive. Practically speaking, this means that local search is always tried
first. If local search alone cannot solve the problem at hand satisfactorily, either
because it has converged to a local optimum (i.e., individual learning is deemed
unproductive because no further improvement can be made by local search) or
because the maximum number of iterations of the local search procedure has
been reached (i.e., individual learning is deemed too costly), then social learning
is used. Of course, it is possible to intertwine the two modes of learning in
a different way. A study on the utility of different learning strategies seems a
fruitful avenue for future research.

IPSOLS shares a number of features with other algorithms. In particular, a
time-varying population size and a subsidiary local search algorithm. Research
on population (re)sizing has been a topic of study within the field of evolutionary
computation for many years. From that experience, it is now usually accepted
that the population size in evolutionary algorithms should be proportional to
the problem’s difficulty [17]. The problem is that we usually know little about
the real-world problem’s difficulty. The approach taken in the design of the
incremental particle swarm-guided local search algorithm (i.e., to start with small
populations) makes sense because if the problem is not so difficult, a growing
population will offer the best solution quality vs. time trade-off. If the problem
is difficult, there will be a time penalty to pay for reaching very high quality
solutions; however, acceptable solutions may be found early in a run.

Practically all resizing strategies consider the possibility of reducing the size
of the population during an algorithm’s run (see e.g. [18,19,20,21,22,23]). An
exception to this approach is the work of Auger and Hansen [24] in which the
population size of a CMA-ES algorithm is doubled each time it is restarted.
The feature that IPSOLS shares with Auger and Hansen’s approach is that no
population reduction mechanism is implemented; however, IPSOLS does not use
restarts and has a slower population growth rate. Nevertheless, it may be that
the performance of IPSOLS is improved by decreasing the population size from
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Fig. 4. Development of the solution quality over time (median values) for different
local search step sizes using RLS

time to time. This is because decreasing the population size may save many
function evaluations. In terms of solution quality, however, it is not expected
that this may impact negatively on the quality of the solutions found since the
choice of removal would be done on converged particles (particles very close to
each other with very small velocity and already in a local minimum).

The idea of combining local search techniques with particle swarm optimiza-
tion algorithms comes from the observation that particles are attracted by their



84 M.A. Montes de Oca, K. Van den Enden, and T. Stützle

previous best positions. It is usually thought that the better the attractors are,
the higher the chances to find even better solutions. The goal of most hybrid
algorithms is thus to accelerate the placement of the particles’ previous best po-
sitions in good spots. For example, Chen et al. [25] combined a particle swarm
algorithm with a hill-climbing local search procedure; Gimmler et al [26] exper-
iment with Nelder and Mead’s simplex method as well as with Powell’s method;
Das et al. [27] also use Nelder and Mead’s simplex method and propose the
inclusion of an estimate of the local gradient into the particles’ velocity up-
date rule. Petalas et al. [28] report experiments with several local search-particle
swarm combination schemes. All these previous approaches try to enhance the
performance of the particle swarm algorithm; IPSOLS, on the contrary, guides
a local search procedure in order to better explore the search space. By doing it
incrementally, IPSOLS can exploit the features of the objective function.

7 Conclusions

A hybrid algorithm for solving continuous optimization problems, called incre-
mental particle swarm-guided local search, has been presented. The algorithm
has two main components: (i) a particle swarm optimization algorithm with
growing population size and (ii) a subsidiary local search procedure that oper-
ates on the particles’ previous best positions. We presented the experimental
evidence that allows us to conclude that the algorithm exhibits a very good
exploitation behavior that does not compromise its global search capabilities.

The design of the proposed algorithm is inspired by results in social learn-
ing and swarm intelligence research. Using a multiagent systems metaphor, the
algorithm can be thought of as a growing population of agents that can learn
both socially and individually. The strategy used by the agents to intertwine
these two modes of learning is the following: when a naive agent becomes part
of the main population, it learns from more experienced agents. Once it is part
of the main population, an agent learns socially only when learning individually
is considered to be too costly or when doing it is deemed unproductive.
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Abstract. This paper presents an Optimised Search Heuristic that com-
bines a tabu search method with the verification of violated valid inequal-
ities. The solution delivered by the tabu search is partially destroyed by
a randomised greedy procedure, and then the valid inequalities are used
to guide the reconstruction of a complete solution. An application of the
new method to the Job-Shop Scheduling problem is presented.

Keywords: Optimised Search Heuristic, Tabu Search, GRASP, Valid
Inequalities, Job-shop Scheduling.

1 Introduction

Recently a new class of hybrid procedures, that combine local search based
(meta) heuristics and exact algorithms of the operations research field, have
been designed to find solutions for combinatorial optimisation problems. Fer-
nandes and Lourenço [1] designated these methods by Optimised Search Heuris-
tics (OSH). Different combinations of different procedures are present in the
literature, and there are several applications of the OSH methods to different
problems (see the web page of Fernandes and Lourenço (2007))1.

We present an OSH procedure that uses valid inequalities to reconstruct a local
optimal solution that has been partially destroyed. We first build a feasible solu-
tion with a GRASP procedure and perform a tabu search to get a “good” local
optimum. To continue searching the solution space we perturb the current solu-
tion partially destroying it and then rebuilding it. A greedy randomised method
is used to delete some elements from the local optimal solution. We then test the
existence of violated valid inequalities by the partial solution. These allow us to
establish a new search path for rebuilding a complete feasible solution, and hope-
fully lead us to an attractive unexplored region of the solution space. We named
this procedure Tabu VVI from Tabu with Violated Valid Inequalities.
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The idea of this new method is to mimic the cuts in integer programming,
letting the violated valid inequalities cut off regions of the solution space where
the objective function would have a value not better than the one of the current
solution. This way the search is guided from a local optimal solution to a higher-
quality region of the search space.

The procedure is illustrated with an application to the job-shop scheduling
problem.

This paper is organized as follows: we start by presenting a literature review
and motivation, proceed introducing the job-shop scheduling problem and con-
tinue describing the application of the Tabu VVI to it. Computational results
are presented along with comparisons to other OSH methods applied to the job
shop problem and also to the state of the art tabu search algorithm of Nowicki
and Smutnicki [2].

2 Literature Review and Motivation

In the literature we can find a few works combining metaheuristics with exact
algorithms applied to the job-shop scheduling problem, designated as Optimised
Search Heuristics (OSH) by Fernandes and Lourenço [1].

Chen, Talukdar and Sadeh [3] and Denzinger and Offermann [4] design parallel
algorithms that use asynchronous agents information to build solutions; some of
these agents are genetic algorithms, others are branch-and-bound algorithms.

Tamura, Hirahara, Hatono and Umano [5] design a genetic algorithm where the
fitness of each individual, whose chromosomes represent eachvariable of the integer
programming formulation, is the bound obtained solving lagrangean relaxations.

The works of Adams, Balas and Zawack [6], Applegate and Cook [7], Caseau
and Laburthe [8], Balas and Vazacopoulos [9] and Pezzella and Merelli [10] all
use an exact algorithm to solve a sub problem within a local search heuristic for
the job-shop scheduling. Caseau and Laburthe [8] build a local search where the
neighbourhood structure is defined by a subproblem that is exactly solved using
constraint programming. Applegate and Cook [7] develop the shuffle heuristic. At
each step of the local search the processing orders of the jobs on a small number
of machines is fixed, and a branch-and-bound algorithm completes the schedule.
The shifting bottleneck heuristic, due to Adams, Balas and Zawack [6], is an
iterated local search with a construction heuristic that uses a branch-and-bound
to solve the subproblems of one machine with release and due dates. Balas and
Vazacopoulos [9] work with the shifting bottleneck heuristic and design a guided
local search, over a tree search structure, that reconstructs partially destroyed
solutions. The procedure of Pezzella and Merelli [10] is a tabu search that uses a
branch-and-bound to solve one-machine subproblems; both at the construction
of the initial solution and at a re-optimisation phase of the algorithm.

Lourenço [11] and Lourenço and Zwijnenburg [12] use branch-and-bound
algorithms to strategically guide an iterated local search and a tabu search al-
gorithm. The diversification of the search is achieved by applying a branch-and-
bound method to solve a one-machine scheduling subproblem obtained from the
incumbent solution.
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In the work of Schaal, Fadil, Silti and Tolla [13] an interior point method
generates initial solutions of the linear relaxation. A genetic algorithm finds
integer solutions. A cut is generated based on the integer solutions found and
the interior point method is applied again to diversify the search. This procedure
is defined for the generalized job-shop problem.

The interesting work of Danna, Rothberg and Le Pape [14] “applies the spirit
of metaheuristics” in an exact algorithm. Within each node of a branch-and-cut
tree, the solution of the linear relaxation is used to define the neighbourhood
of the current best feasible solution. The local search consists in solving the
restricted MIP problem defined by the neighbourhood.

We are especially interested in combinations of exact and heuristic methods
where the exact procedures can be used to strategically guide the heuristic ones.
In this paper we mimic the cutting plane algorithms using the verification of the
existence of violated valid inequalities to guide the search in the solution space.
We are not aware of any other works using this methodology.

We chose to apply this new method to the job-shop scheduling problem be-
cause it is considered a particularly hard combinatorial optimisation problem
of the NP-hard class, and so a few methods that combine exact and heuristic
procedures have already been design to handle it.

3 The Job Shop Scheduling Problem

The job-shop scheduling problem (JSSP) has been known to the operations re-
search community since the early 50’s [15]. It is considered a particularly hard
combinatorial optimisation problem of the NP-hard class [16] and it has nu-
merous practical applications; which makes it an excellent test problem for the
quality of new scheduling algorithms. These are main reasons for the vast litera-
ture on both exact and heuristic procedures applied to this scheduling problem.

The job-shop scheduling problem considers a set of jobs to be processed on
a set of machines. Each job is defined by an ordered set of operations and each
operation is assigned to a machine with a predefined constant processing time
(pre-emption is not allowed). The order of the operations within the jobs and its
correspondent machines are fixed a priori and independent from job to job. To
solve the problem we need to find a sequence of operations on each machine re-
specting some constraints and optimising some objective function. It is assumed
that two consecutive operations of the same job are assigned to different machines,
that each machine can only process one operation at a time and that different ma-
chines cannot process the same job simultaneously. We will adopt the maximum
of the completion time of all jobs – the makespan – as the objective function.

A common representation for the job-shop problem is the disjunctive graph
G = (O, A, E) [17]; where O is the node set, corresponding to the set of opera-
tions with two dummy operations; 0 representing the source node and o + 1 the
sink node; A is the set of arcs between consecutive operations of the same job,
and E is the set of edges between operations processed by the same machine.
For every node j of O\ {0, o + 1} there are unique nodes i and l such that arcs



90 S. Fernandes and H.R. Lourenço

(i, j) and (j, l) are elements of A. Node i is called the job predecessor of node
j - jp(j) and l is the job successor of j - js(j). Finding a solution to the job
shop scheduling problem means replacing every edge of E with a directed arc,
constructing an acyclic directed graph DS = (O, A

⋃
S) where S =

⋃
k Sk cor-

responds to an acyclic union of sequences of operations for each machine k. The
optimal solution is the one represented by the graph DS having the critical path
from 0 to o + 1 with the smallest length or makespan.

4 Tabu VVI Applied to the JSSP

The algorithm Tabu VVI has two main stages. The first stage consists of building
a feasible solution, and executing the tabu search procedure starting from it.
The second stage consists of a large step followed by the tabu search, and it is
repeated for a predefined number of iterations. The large step partially destroys
the solution delivered by the tabu search, looks for violated valid inequalities
that enforce some order between unscheduled operations, and then rebuilds a
complete solution respecting those established orders. The information about
the algebraic structure of the problem within the valid inequalities is used to
guide the search. The idea is to perturb the current complete solution achieving
diversification and leading the search method to new unexplored regions of the
solution space.

The main loop of the algorithm is stopped either when the lower bound of
the instance is achieved (LB), or a predefined maximum number of iterations
are executed without improving the upper bound (UB). Figure 1 shows a not
detailed and simplified pseudo-code of algorithm Tabu VVI.

4.1 Building a Feasible Solution

We first build a feasible solution using a GRASP B&B algorithm [18]. It is
a simple heuristic that includes a branch-and-bound method at the building
phase of a GRASP procedure. A GRASP [19] is an iterative process where each
iteration consists of two steps: a randomised building step of a greedy nature
and a local search step. The branch-and-bound is used in the building step to
solve subproblems of single machine scheduling problems. The neighbourhood of
the local search uses the notions of blocks of critical operations, defining critical
pairs of operations belonging to the same block, and performing forward and
backward moves on them. A block of critical operations is a maximal ordered
set of consecutive operations of a critical path (in the disjunctive graph that
represents the solution), sharing the same machine. Let L(i, j) denote the length
of the critical path from node i to node j.

Two operations u and v form a forward critical pair (u, v) if:

a) they both belong to the same block;
b) v is the last operation of the block;
c) operation js(v) also belongs to the same critical path or v is the last
operation of the job;
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d) the length of the critical path from v to o + 1 is not less than the length
of the critical path from js(u) to o + 1 (L(v, o + 1) ≥ L(js(u), o + 1)).

Two operations u and v form a backward critical pair (u, v) if:

a) they both belong to the same block;
b) u is the first operation of the block;
c) operation jp(u) also belongs to the same critical path or u is the first
operation of the job;
d) the length of the critical path from 0 to u, including the processing time
of u, is not less than the length of the critical path from 0 to jp(v), including
the processing time of jp(v) (L(0, u) + pu ≥ L(0, jp(v)) + pjp(v)).

Conditions d) are included to guarantee that all moves lead to feasible solu-
tions [9]. A forward move is executed by moving operation u to be processed
immediately after operation v. A backward move is executed by moving opera-
tion v to be processed immediately before operation u.

For a detailed description of the GRASP B&B algorithm please refer to [18].

4.2 Tabu Search

A tabu search procedure [20,21] is a local search procedure that inspects the
whole neighbourhood of a current solution x and executes the move that pro-
duces the best neighbour ybest. The value of ybest may be worse than the one of
x, so the move that goes back from ybest to x becomes forbbiden, named tabu
moves. The set of tabu moves is updated in every iteration of the method, so

Tabu VVI

xi = GRASP B&B(runs)
x = TabuSearch(xi)
UB =makespan(x)
xb = x
while((UB > LB) and (#iterations without improvement < max #iterations))

xd = Destroy(x)
xd = FindValidInequalities(xd)
x = Rebuild(xd)
x = TabuSearch(x)
if(makespan(x) < UB)

update UB
xb = x

endif
endwhile
return(xb)

Fig. 1. Outline of Tabu VVI: (xi) - initial feasible solution, (x) - current complete
solution, (xd) - partially destroyed solution, (xb) - best solution, (LB) - lower bound
derived from the makespan of the first bottleneck machine
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the neighbourhood definition is dynamically updated. The procedure stops after
a predefined number of iterations have been performed without improving the
best solution found.

In order to implement a simple tabu search procedure we need to define the
neighbourhood structure, the tabu length that defines how long will a move
remain tabu, and an aspiration criterion, to be able to execute moves abusively
considered tabu. (this abuse happens because we do not keep track of the pair
of solutions before and after a move, but only of some features of the move).

The neighbourhood structure of the tabu search implemented is the same
used in the local search of the GRASP B&B [18]. But this time we keep track
of those moves rejected by conditions d) because they could produce a cycle in
the disjunctive graph, thus leading to an infeasible solution. When the neigh-
bourhood is empty, we look in these rejected moves for feasibility and execute
the one that generates the best feasible solution. If none of the rejected moves
produces a feasible solution we then execute the tabu move that would remain
tabu for the shortest number of iterations.

The number of iterations a move (performed on solution x) stays tabu – the
tabu length – is defined so it depends on the size of the neighbourhood of solution
x. If a solution x has many neighbours, the reverse move of the one executed to
leave from it stays tabu for a longer number of iterations than the reverse move of
the one executed to leave from a solution y with a smaller neighbourhood. This
way we state that the possibility of returning to a previously visited solution is
not equal for every solution but depends on the number of neighbours it has.

The aspiration criterion allows a tabu move to be executed if the value of the
resulting solution is better than the best one found so far.

Every time the tabu search improves the best known solution we apply an
intensification scheme that consists in repeating the tabu search, this time du-
plicating the number of allowed iterations without improvement.

4.3 Large Step

Partially destroying a solution. The tabu search module of the algorithm
provides a local optimal solution and its makespan is an upper bound for the
optimal value. This solution is then perturbed using a greedy randomised method
to eliminate the sequences of processing operations of some machines.
Considering the acyclic directed graph that represents the solution, arcs con-
necting operations processed by the same machine are deleted. This method is
biased toward machines that, when their sequence of processing operations is
deleted, lead to a bigger reduction on the makespan of the solution. We keep
“deleting” machines (destroying the sequence for processing the operations) until
the makespan of the resulting partial solution is less than the upper bound.

After a predefined maximum number of global iterations are executed without
improving the best solution found, the algorithm continues, for the same amount
of iterations, this time choosing to “delete” machines that lead to the smallest
reduction on the makespan. While the best solution found keeps being updated,
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we keep running the algorithm, alternating the criteria for “deleting” machines
from the solution.

Finding violated valid inequalities. Having a partial solution and an upper
bound (UB) for the optimal value, we then test the existence of violated valid
inequalities. These allow us to establish some orders between operations of each
unscheduled machine.

The procedure looks for violated valid inequalities for every machine whose
sequence of operations is not present on the current partial solution. The process
cycles through all the “deleted” machines and is repeated until no more orders
between operations are set.

We use the same inequalities that were used in the branch-and-bound algo-
rithms of Carlier and Pinson [22] and Applegate and Cook [7].

Let α be a machine of the instance whose sequence of processing the opera-
tions was deleted from the solution, and Sα any given sub-set of the operations
processed by α. Every operation i has an earliest possible starting time - ei, a
processing time - pi and a minimum completion time after it is processed - fi.

If for any given set Sα and any given operation i ∈ Sα, min
j∈Sα\{i}

{ ej} +∑
j∈Sα

pj + min
j∈Sα

{ fj} ≥ UB then, to be possible to reduce the upper bound,

operation i must be processed on α before any other operation in Sα. The inverse
inequality min

j∈Sα

{ ej} +
∑

j∈Sα
pj + min

j∈Sα\{i}
{ fj} ≥ UB states that operation i

must be processed on α after any other operation in Sα.
Let Cα be the set of operations not yet ordered for machine α, Eα ⊆ Cα the

sub-set of operations that could be scheduled first, and Fα ⊆ Cα the subset of
operations that could be scheduled last. If there is an operation i ∈ Eα such
that ei +

∑
j∈Cα

pj + min
j∈Fα

{ fj} ≥ UB then i can be removed from Eα. If Eα

contains only one operation, then it must be processed on α before any other
operation in Cα. The reverse inequality min

j∈Eα

{ ej}+
∑

j∈Cα
pj + fi ≥ UB states

that i cannot be scheduled after all the other operations in Cα, and should be
removed from Fα.

Not all the sub-sets Sα are inspected when looking for violated valid in-
equalities that allow us to fix orders between operations of one machine, as
it would be too computationally expensive. A reduced number of sub-sets are
formed including operations by its decreasing values of starting and completion
times.

If when looking for violated valid inequalities we find none, then we rein-
troduce a deleted machine in the solution and we look again for violated valid
inequalities. The machine to add to the solution is chosen randomly. If the vio-
lated valid inequalities lead to incompatible sequences of operations, this means
we cannot improve the upper bound (UB) with the set of sequenced machines,
and another machine is deleted from the solution. If this happens repeatedly and
the solution becomes empty, then the current complete solution is optimal.
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Rebuilding a complete solution. The solution is reconstructed including
the sequence of operations of one machine at a time. The order of adding the
sequences in the machines to the solution is the same as for the elimination.
The first machine to be re-included in the solution is the one that was first re-
moved, and so on. The schedule of operations for each machine is determined
using a modified version of the Schrage algorithm [23] that considers pre-defined
orders between operations. Each time the sequence of operations of a machine is
re-included in the solution, a restricted local search is executed, where it is for-
bidden to change orders fixed by the valid inequalities. When a new sequence of
operations is included, we look for new violated valid inequalities in all remaining
unscheduled machines, trying to fix more orders between operations.

After the solution is complete, local search is executed.

5 Computational Results

We have tested the algorithm Tabu VVI on 132 benchmark instances: abz5-9
[6], ft6, ft10, ft20 [24], la01-40 [25], orb01-10 [7], swv01-20 [26], ta01-50 [27] and
yn1-4 [28] 2. The size of the instances is measure by the number of operations
(equal to the number of jobs times the number of machines). The instances have
different sizes: ft6 is the smaller one with 6×6 operations; la01-05 have 10×5;
la06-10 have 15×5; ft20 and la11-15 have 20×5; abz5-6, ft10, la16-20 and orb01-
10 have 10×10; la21-25 have 15×10; la26-30 and swv01-05 have 20×10; la36-40
and ta01-10 have 15×15; abz7-9, swv06-10 and ta11-20 have 20×15; ta31-40 and
yn1-4 have 20×20; the bigger ones are ta41-50 with 30×20 operations.

An optimal solution has already been found for 83 of these instances; namely
abz5-7, ft6, ft10, ft20, la01-40, orb01-10, swv01-02, swv05, swv13-14, swv16-20,
ta01-10, ta14, ta17, ta31, ta35-36 and ta38-39.

We have tested a few slightly different versionsof the method Tabu VVI. Within
the tabu search module, different values of the tabu length parameter were tested:
equal to the number of neighbours; half of it and the double of it. Also inside the
tabu search module, we have tested not to look for those moves rejected by condi-
tions d), so when a neighbourhood is empty the eligible tabu move is always the
one executed. The number of tabu iterations allowed without improving the best
solution was set to the number of operations of each instance. Within the rebuild
module, we have also tested to build the sequence of processing operations in one
machine using a branch-and-bound method instead of just the priority rule of the
Schrage algorithm. The orders between operations that were fixed by the find vi-
olated valid inequalities module are always respected.

At the first stage of the method Tabu VVI, the GRASP B&B algorithm was
run for 10 iterations to generate the initial feasible solution and tabu search was
run for 100 iterations without improvement.

The algorithm has been run on a Pentium 4 CPU 2.80 GHz and coded in C.

2 These instances can be found in http://people.brunel.ac.uk/ mastjjb/jeb/orlib/files/
files jobshop1.txt and jobshop2.txt
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In order to measure the performance of the algorithm we use the percentage
of relative error to the lower bound - RELB (or to the optimum if the problem
is closed). f(x) stands for the makespan of the best solution found.

RELB (x) = 100%× f (x) − LB

LB

The next table 1 presents the performance of two variants of the algorithm
that we found most successful, considering the sum of the RELB for all the
instances tested, and also a column with the best results over all the 15 variants
tested. The two chosen variants are tabu mv inf, the variant described earlier,
and tabu mv bb, where moves rejected by conditions d) are not considered and
branch-and-bound is used in the rebuilding module. The tabu tenure is set to
be equal to the number of neighbours in both variants.

The table shows the average values (over a group of instances) of the RELB

and the time in seconds to the best solution found.

Table 1. Results by Tabu VVI: variants tabu mv inf and tabu mv bb, and the best
of all variants, for all groups of instances, in average percentage of the relative error to
the lower bound, and the average time to the best, in seconds

instances tabu mv inf tabu mv bb best all variants
avg(RELB) avg(time) avg(RELB) avg(time) avg(RELB) avg(time)

abz 2.11 63.77 1.93 61.02 1.71 81.46

ft 0 11.72 0 0.58 0 0.15

la01-05 0 0.12 0 0.12 0 0.03
la06-10 0 0.02 0 0.03 0 0.02
la11-15 0 0.04 0 0.05 0 0.04
la16-20 0 1.79 0 1.67 0 0.44
la21-25 0.11 23.13 0.06 14.80 0 7.94
la26-30 0.29 54.12 0.26 40.88 0.17 83.39
la31-35 0 0.38 0 0.39 0 0.27
la36-40 0.47 22.68 0.22 33.50 0.05 57.08

orb 0.23 7 0.09 14.13 0 4.30

swv01-05 2.89 88.05 2.93 120.43 2.33 127.91
swv06-10 8.89 336.94 9.51 204.27 8.06 281.64
swv11-15 1.78 1734.51 2.03 825.21 1.41 1854.58
swv16-20 0 1.58 0 1.64 0 1.58

yn 7.49 339.33 7.91 73.61 7 163.95

ta01-10 0.63 77.72 0.81 67 0.24 49.52
ta11-20 3.47 54.20 3.70 86.60 3.12 177.24
ta21-30 6.51 319.27 6.60 269.97 5.96 319.02
ta31-40 1.79 230.90 1.60 258.49 1.26 220.62
ta41-50 6.04 650.87 5.88 559.71 5.47 1016.21
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Table 2. Results by variants tabu mv inf and tabu mv bb of Tabu VVI, and the algo-
rithm of Caseau and Laburthe, in average percentage of the relative error to the lower
bound, and the average time to the best, in seconds

instances Tabu VVI CL
tabu mv inf tabu mv bb

avg(RELB) avg(time) avg(RELB) avg(time) avg(RELB) avg(time)

abz 2.11 63.77 1.93 61.02 2.57 112.67

ft 0 11.72 0 0.58 0 112

la01-05 0 0.12 0 0.12 0 3.80
la06-10 0 0.02 0 0.03 0 0.75
la11-15 0 0.04 0 0.05 0 27
la16-20 0 1.79 0 1.67 0 25.08
la21-25 0.11 23.13 0.06 14.80 0.11 551.40
la26-30 0.29 54.12 0.26 40.88 0.47 4322.25
la31-35 0 0.38 0 0.39 0 2108.40
la36-40 0.47 22.68 0.22 33.50 0.37 2476.40

orb 0.23 7 0.09 14.13 1.66 111.11

We have found a new upper bound, 1765, for instance swv10 in 101 seconds.
The values of best known lower and upper bounds were gathered from the paper

of Jain and Meeran [15] and the papers of Nowicki and Smutnicki [2], [29], [30].

5.1 Comparison to Other OSH Methods

The optimised search methods applied to the job-shop scheduling problem, that
we know of and have mentioned in the literature review, are only applied to
the older and easier instances of the problem, except for the works of Balas and
Vazacopoulos [9] and Pezzella and Merelli [10], that will be treated separately.

The method of Danna, Rothberg and Le Pape [14] is applied to instances of
the weighted-tardiness version of the problem, and the work of Schaal, Fadil,
Silti and Tolla [13] is applied to the generalised scheduling problem.

Our method, Tabu VVI is better for all the comparable instances (except for
one or two exceptions), in quality of the solutions and in computational time,
then the works of Chen [3], Denzinger and Offermann [4], Tamura, Hirahara,
Hatono and Umano [5], Adams, Balas and Zawack [6], Applegate and Cook
[7], Lourenço [11] and Lourenço and Zwijnenburg [12]. In table 2 we show the
comparison results to the work of Caseau and Laburthe (named CL), because it
is the best of these methods and also because it is the one that presents results
for more instances. Their algorithm was run on a SunSparc 10 machine. The
running times for their method are not scaled for our PC. Nonetheless we state
our algorithm is faster and achieves better quality solutions.
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Comparison to Guided Local Search. The guided local search procedure of
Balas and Vazacopoulos [9] designs a search procedure based on local improve-
ments and accepting non improving moves, using structures of neighbourhood
trees. Each neighbourhood tree corresponds to a cycle of the guided local search
procedure. Each node of the tree stores a solution and each edge connects neigh-
bour solutions. Feasible solutions are built solving to optimality by branch-and-
bound all one-machine subproblems (like the shifting bottleneck heuristic [6]).
After a few cycles of neighbourhood trees, the procedure randomly destroys the
best solution found; deleting the sequence of operations for some machines, and
then reconstructs the partially destroyed solution repeating the all process.

Here we compare our best results to their best reported version SB-RGSL10,
which stands for shifting bottleneck with randomised guided local search. The
10 means the number of times the all process is repeated. We call it BZ. Their
algorithm was run on a SunSparc 30 machine. The comparison results between
algorithms Tabu VVI and BZ are shown in table 3. Although we used different
computers and their running times are not scaled for our PC, we can still say that
our method is always faster then BZ. Quality values that win the comparison
are shown in bold.

Comparison to the Tabu Search with Shifting Bottleneck. The proce-
dure of Pezzella and Merelli [10] combines tabu search with the shifting bot-
tleneck heuristic. The later is used to build the initial solution, and also at the

Table 3. Results by the best of all variants of Tabu VVI and the best variant of the
algorithm of Balas and Vazacopoulos; in average percentage of the relative error to the
lower bound, and the average time per run to the best, in seconds

instances Tabu VVI BZ
avg(RELB) avg(time) avg(RELB) avg(time)

la01-05 0 0.03 0 5.9
la16-20 0 0.44 0 47
la21-25 0 7.94 0 139.6
la26-30 0.17 83.4 0.19 121.6
la36-40 0.05 57.1 0.03 278

orb 0 4.30 0.10 80.18

swv01-05 2.33 128 2.02 1290
swv06-10 8.06 282 9.64 2917
swv11-15 1.41 1855 2.12 9173

yn 7 164 5.96 5938

ta01-10 0.24 49.5 0.25 1182
ta11-20 3.12 177 3.34 3383
ta21-30 5.96 319 6.57 4377
ta31-40 1.26 221 1.13 5069
ta41-50 5.47 1016 5.71 10726
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re-optimisation phase of the algorithm. Whenever the tabu search cycle improves
the best known solution, the procedure deletes the sequence of operations of all
critical machines (machines with operations in the critical path). After shifting
bottleneck rebuilds the solution, the tabu search is repeated. The tabu search
module uses a dynamic management of three different neighbourhood structures
and a tabu list of variable size, dependent of how many tabu iterations have
been executed. The algorithm, that we name PM, was run on a Pentium 133
MHz. Table 4 shows the comparison results between algorithms Tabu VVI and
PM. Quality values that win the comparison are shown in bold.

Table 4. Results by the best of all variants of Tabu VVI and the algorithm of Pezzella
and Merelli; in average percentage of the relative error to the lower bound, and the
average time to the best, in seconds

instances Tabu VVI PM
avg(RELB) avg(time) avg(RELB) avg(time)

abz 1.71 81.5 2.23 151

ft 0 0.15 0 65

la01-05 0 0.03 0 9.8
la06-10 0 0.02 0 -
la11-15 0 0.04 0 -
la16-20 0 0.44 0 61.5
la21-25 0 7.94 0.1 115
la26-30 0.17 83.4 0.46 105
la31-35 0 0.27 0 -
la36-40 0.05 57.1 0.58 141

ta01-10 0.24 49.5 0.45 2175
ta11-20 3.12 177 3.47 2526
ta21-30 5.96 319 6.52 34910
ta31-40 1.26 221 1.92 141333
ta41-50 5.47 1016 6.04 11512

5.2 Comparison to State of the Art Procedure - Tabu Search with
Path-Relinking

Along with the guided local search procedure of Balas and Vazacopoulos [9], and
the tabu search with shifting bottleneck of Pezzella and Mirelli [10], one other
procedure, due to Nowicki and Smutnicki [2], forms the group of three procedures
that are the best up to date methods applied to the job-shop scheduling problem.

The procedure of Nowicki and Smutnicki performs path-relinking between
elite solutions found by a tabu search module. The solutions achieved by the
path-relinking are then used as starting points for new cycles of the tabu search;
the set of elite solutions is updated and the all process is repeated. We can say
that the path-relinking works as the diversification strategy of the tabu search.
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The algorithm uses a data structure specially designed for the application of
this method to the job-shop scheduling problem. The instances of Taillard [27]
were used to study the distribution of the local optima solutions in the solution
space; and this study supported the design of this method. The algorithm, that
we name NS, was run on a Pentium 900 MHz. Unlike all other procedures, the
computational times reported by the authors do not include the time needed
to build the initial solutions. Table 5 shows the comparison results between
algorithms Tabu VVI and NS. After running for approximately the same amount
of time, Tabu VVI achieves solutions with quality very close to the results of NS.

Table 5. Results by the best of all variants of Tabu VVI and the algorithm of Nowicki
and Smutnicki; in average percentage of the relative error to the lower bound, and the
average time to the best, in seconds

instances Tabu VVI NS
avg(RELB) avg(time) avg(RELB) avg(time)

swv01-05 2.33 128 1.01 462
swv06-10 8.06 282 7.49 514
swv11-15 1.41 1855 0.51 360

yn 7 164 5.18 510

ta01-10 0.24 50 0.11 26
ta11-20 3.12 177 2.81 108
ta21-30 5.96 319 5.68 328
ta31-40 1.26 221 0.78 341
ta41-50 5.47 1016 4.7 975

6 Conclusions

We have developed a powerful, fast and innovative optimised search heuristic
to solve combinatorial optimisation problems. It uses an exact technique from
the operations research field to guide the search process of a metaheuristic. The
procedure, named Tabu VVI, uses the verification of violated valid inequalities
as a diversification strategy of a tabu search procedure. The idea of this new
method is to mimic the cuts in integer programming, letting the violated valid
inequalities discard the current solution and guide the search from a local optimal
solution to a more quality region of the search space.

The procedure was illustrated with an application to the job-shop scheduling
problem. We presented some computational results for a large set of benchmark
instances, along with comparisons to other similar and successful works. Our new
method, Tabu VVI, always performs better than other methods that combine
exact and heuristic procedures. It compares most favourably to two other leading
methods for solving the job-shop scheduling problem; the guided local search
of Balas and Vazacopoulos [9] and the tabu search with shifting bottleneck of
Pezzella and Mirelli [10]. When compared to the state of the art tabu search of
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Nowicki and Smutnicki [2], after running for approximately the same amount of
time, Tabu VVI achieves solutions with quality very close to theirs.
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Control, Chambéry, France (1993)

4. Denzinger, J., Offermann, T.: On cooperation between evolutionary algorithms and
other search paradigms. In: 1999 Congress on Evolutionary Computation (CEC).
IEEE Press, Los Alamitos (1999)

5. Tamura, H., Hirahara, A., Hatono, I., Umano, M.: An approximate solution method
for combinatorial optimisation. Transactions of the Society of Instrument and Con-
trol Engineers 130, 329–336 (1994)

6. Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job shop
scheduling. Management Science 34(3), 391–401 (1988)

7. Applegate, D., Cook, W.: A computational study of the job-shop scheduling
problem. ORSA Journal on Computing 3(2), 149–156 (1991)

8. Caseau, Y., Laburthe, F.: Disjunctive scheduling with task intervals. Technical
Report LIENS 95-25, Ecole Normale Superieure Paris (July 1995)

9. Balas, E., Vazacopoulos, A.: Guided local search with shifting bottleneck for job
shop scheduling. Management Science 44(2), 262–275 (1998)

10. Pezzella, F., Merelli, E.: A tabu search method guided by shifting bottleneck for
the job shop scheduling problem. European Journal of Operational Research 120,
297–310 (2000)

11. Lourenço, H.R.: Job-shop scheduling: Computational study of local search and
large-step optimization methods. European Journal of Operational Research 83,
347–367 (1995)

12. Lourenço, H.R., Zwijnenburg, M.: Combining large-step optimization with tabu-
search: Application to the job-shop scheduling problem. In: Osman, I.H., Kelly,
J.P. (eds.) Meta-heuristics: Theory & Applications. Kluwer Academic Publishers,
Dordrecht (1996)

13. Schaal, A., Fadil, A., Silti, H.M., Tolla, P.: Meta heuristics diversification of gener-
alized job shop scheduling based upon mathematical programming techniques. In:
CP-AI-OR 1999 (1999)

14. Danna, E., Rothberg, E., Pape, C.L.: Exploring relaxation induced neighborhoods
to improve MIP solutions. Mathematical Programming, Ser. A 102, 71–90 (2005)

15. Jain, A.S., Meeran, S.: Deterministic job shop scheduling: Past, present and future.
European Journal of Operational Research 133, 390–434 (1999)

16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

17. Roy, B., Sussman, B.: Les problems d’ordonnancement avec constraintes disjonc-
tives. Technical report, Notes DS 9 bis, SEMA, Paris (1964)

18. Fernandes, S., Lourenço, H.R.: A GRASP and branch-and-bound metaheuristic for
the job-shop scheduling. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS,
vol. 4446, pp. 60–71. Springer, Heidelberg (2007)



OSH Combining Valid Inequalities and Tabu Search 101

19. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of
Global Optimization 6, 109–133 (1995)

20. Glover, F.: Tabu search - part i. ORSA Journal on Computing 1(3), 190–206 (1989)
21. Glover, F.: Tabu search - part ii. ORSA Journal on Computing 2(1), 4–32 (1990)
22. Carlier, J., Pinson, E.: An algorithm for solving the job-shop problem. Management

Science 35(2), 164–176 (1989)
23. Schrage, L.: Solving resource-constrained network problems by implicit enumera-

tion: Non pre-emptive case. Operations Research 18, 263–278 (1970)
24. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop

scheduling rules. In: Muth, J.F., Thompson, G.L. (eds.) Industrial Scheduling, pp.
225–251. Prentice-Hall, Englewood Cliffs (1963)

25. Lawrence, S.: Resource constrained project scheduling: an experimental investi-
gation of heuristic scheduling techniques. Technical report, Graduate School of
Industrial Administration, Carnegie-Mellon University (1984)

26. Storer, R.H., Wu, S.D., Vaccari, R.: New search spaces for sequencing problems
with application to job shop scheduling. Management Science 38(10), 1495–1509
(1992)

27. Taillard, E.D.: Benchmarks for basic scheduling problems. European Journal of
Operational Research 64(2), 278–285 (1993)

28. Yamada, T., Nakano, R.: A genetic algorithm applicable to large-scale job-shop
problems. In: Manner, R., Manderick, B. (eds.) Parallel Problem Solving from
Nature 2, pp. 281–290. Elsevier Science, Brussels Belgium (1992)

29. Nowicki, E., Smutnicki, C.: Some new tools to solve the job shop problem. Techni-
cal Report 60/2002, Institute of Engineering Cybernetics, Wroclaw University of
Technology (2002)

30. Nowicki, E., Smutniki, C.: A fast taboo search algorithm for the job shop problem.
Management Science 42(6), 797–813 (1996)



Iterated Greedy Algorithms for a Real-World

Cyclic Train Scheduling Problem
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Abstract. In this paper, we develop heuristic algorithms for a com-
plex locomotive scheduling problem in freight transport that arises at
Deutsche Bahn AG. While for small instances an approach based on an
ILP formulation and its solution by a commercial ILP solver was rather
successful, it was found that effective heuristic algorithms are needed for
providing better initial upper bounds and for tackling large instances.
The main contribution of this paper is the development of heuristic al-
gorithms that strongly improve over the performance of the greedy al-
gorithm used in the previous research efforts. The development process
was done on a step-by-step basis ranging from improvements over the
initial greedy construction heuristic, the development of a simple local
search algorithm, the further extension to an iterated greedy procedure
to the adoption of population-based stochastic local search methods. Our
computational results show that the iterated greedy algorithm combined
with a simple local search is a powerful algorithm for this real-world
freight train scheduling problem.

1 Introduction

The problem we are tackling in this paper arises in the strategic planning of the
Deutsche Bahn AG (DB), the largest railway company in Germany. In particular,
the problem arises in the context of a complex simulation tool that is used at
DB to provide long-term simulations and future predictions of the load of the
railway network. The tool can be seen as a chain of modules, where information
between the modules is exchanged through data files.

Our particular problem arises in a module called train scheduler, which is
responsible for the buildup of trains from cars. A train starts as soon as it is
built, that is, when enough cars are assembled. Hence, this also means that
the starting times of the trains do not follow a specific timetable; rather they
follow the estimated customers demand or production. Since the locomotives
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are among the most expensive resources of the operation of railroad companies,
their efficient scheduling is of high importance.

The locomotive scheduling, with which we deal here, can be characterized as
a vehicle routing problem with time windows, a heterogeneous fleet of vehicles
(due to different types of locomotives), and cyclic departures of trains. It also
includes two important additional aspects: network-load dependent travel times
and the transfer of cars between trains. In earlier work [1], we have developed
an integer linear programming (ILP) formulation of the problem and proposed a
solution approach for the problem using a commercial ILP solver (ILOG Cplex
10 [2]). In the corresponding experimental campaign [1], we noticed that (i) the
minimum number of missed car transfers is relatively easy to find, (ii) with fixed
starting times, relatively large instances with up to about 1 500 trips could be
solved to optimality, (iii) the models that allowed the flexible choice of starting
times within some predefined time windows made the problem much more diffi-
cult to solve: the size of the instances that could successfully be tackled by the
commercial ILP solver (after some additional improvements such as providing
good initial feasible solutions and problem-specific cutting planes) was limited to
medium sized instances with a few hundreds of trips [1]. Despite the added com-
putational difficulty, the hardest model with flexible starting times has highly
desirable properties: allowing to vary the starting times within small time win-
dows results in a considerable reduction of the required number of locomotives
and, hence, a strong reduction in the total costs [1].

We tackle the most difficult problem variant studied in [1], namely the one that
uses time windows and network-load dependent travel times. For this variant,
which is also the most realistic and interesting one, heuristic algorithms are
required to generate good quality solutions to large instance sizes, but also ILP
approaches can benefit from improved initial upper bounds for medium sized
instances. In this paper, we therefore report on our research for improving upon
the performance of the greedy construction heuristics that have been used in
[1]. Our development process departs from these greedy heuristics, extending
them step-by-step. The first extensions comprise a direct modification of the
greedy heuristic by changing the way solutions are constructed. Next, we extend
the construction heuristic to an iterated greedy (IG) algorithm [3] and further
hybridize it with a simple iterative improvement algorithm. Our experimental
results show that for computation times ranging from a few seconds to a few
minutes on current CPUs, very strong improvements over the initial greedy
heuristic can be obtained. A further hybridization of the IG algorithm with ant
colony optimization (ACO) algorithms, however, gave rather mixed results and
no further significant improvement in performance.

2 The Freight Train Scheduling Problem

It is convenient to first describe the nomenclature used in the context where this
freight train scheduling problem arises.
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2.1 Problem Setting

Cars. A car is the smallest unit to be moved; cars have to be moved from a
source to a destination within the railway network. A train is composed of a set
of cars. Large customers require the transport of large amounts of goods so that
they order whole trains; in such a case, the route of the cars is the same as the
route of the train. Individual or small sets of cars are used by smaller customers.
Several such cars are then assembled into a train, moved to some intermediate
destination, which is called shunting yard, where trains are disassembled and
reassembled into new trains. We assume that that the place and timing of these
transfers is known for individual cars. Note that the scheduling of locomotives
needs to take care that these transfers remain feasible.

Trains. A freight train (also called active trip) consists of several cars. Each
train has a start and a destination, which are goods stations or railroad shunting
yards, and starting times and arrival times. Times can be either fixed times or
be taken from some interval. In our case, trips start cyclically every 24 hours.
The trip duration is the difference between start and arrival times. Trains vary in
lengths and weight and, depending on these two characteristics, different needs
on the driving power of locomotives arise. Typically, a single locomotive is enough
and only rarely two pulling locomotives are required. The handling of a train
involves attaching a locomotive to a train at the start and the decoupling of the
locomotive at the destination. For both coupling processes, some time (up to 30
minutes, depending on the trip) is required for technical checks or refueling.

Locomotives. The around 30 different models of locomotives that are used at
DB share many similarities and so they can be classified into a small number
of different classes. Differences between the classes concern mainly the driving
power and the motor type, diesel or electrical. Electrical locomotives can only
be used on electrical tracks, whereas diesel locomotives, in principle, can drive
everywhere. However, diesel soots the electrical wires, so one wants to avoid their
deployment on such tracks. Hence, it is only possible to assign such locomotives
to trains that have a sufficient power and the right motor type for the track.

Deadheads. A locomotive is either active, that is, pulling a train, or deadhead-
ing, that is, driving alone, without pulling a train, from the destination station
of one train to the start of another train. The distance between these points and
the class of locomotive determine the duration of a deadhead trip.

2.2 Formulation of the Problem

Our locomotive scheduling problem can be formulated as a cyclic Vehicle Schedul-
ing Problem (CVSP), more specifically, as a CVSP with hard time windows and a
heterogeneous fleet of vehicles (locomotives); we use the abbreviation CVSPTW
in what follows. The locomotives differ in starting cost and capability, that is, the
subset of customers that can be potentially served by the locomotives. Instead of
starting and terminating at a depot as in standard vehicle routing problems, the
locomotives are scheduled in a cyclic fashion every 24 hours. Given is also a set of
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customers, more specifically in our case a set of trips, that expect exactly one of
the locomotives to pull the train obeying restrictions on the starting and arrival
times (or time windows).

The problem can be described as follows. (A mathematical formulation of the
constraints and objective as a mixed-integer programming model can be found
in [1].) We denote by V the set of active trips and by B the set of locomotive
types. With each trip is associated a list of locomotive types which can serve it.
A = V × V denotes the set of potential connections of pairs of trips. Note that
trips are cyclic, which for our problem means that the trips occur every day.

The time intervals for the starting and arrival times of trips are input data. In
practice, the train scheduler of the tool chain defines fixed starting and arrival
times. In our model, we let the starting time ti of trip i vary in a time window
ti ≤ ti ≤ ti. The times are defined as the minutes passed since some time zero
and, hence, one has that 0 ≤ ti ≤ 1439 (a day has 1440 minutes). Note that
a further constraint imposes that a trip has to start on the first day; hence, in
case ti is larger than 1439, the time interval ti ≤ ti ≤ ti is replaced by two time
intervals ([ti, 1439]∪

[
0, ti

]
) ∩ Z.

Moreover, trains i, j ∈ V that require a car transfer from one to the other need
to be synchronized. Denote P the set of pairs (i, j) where cars transfer from i to
j. We assume P is valid and given by the earlier computation module. For all
(i, j) ∈ P the transferred car must be picked up by j within 12 hours after the
arrival of i at the shunting yard.

Our model includes network-load dependent travel times. This is important
since typically at day time the average traveling speed of a freight train is lower
than during nighttime; the main reason is that passenger trains have a higher
priority than most freight trains, leading to frequent waiting times for the latter.
To model this aspect, we partition a day into a number of time slices H =
{1, . . . , H}, that is, [0, 1439] =

⋃̇
h∈H[ψ

h
, ψh]. The starting time of a train then

falls into one of the slices and the travel times are considered accordingly.
The total trip and deadhead durations δb,(i,j) for a locomotive of type b that

serves both trips i and j are computed as

δb,(i,j) := δtrp
i + δuncpl

i + δdhd
b,(i,j) + δcpl

j , (1)

where δtrp
i denotes the trip duration, that is, the time the locomotive is active

while pulling train i; δuncpl
i denotes the time for uncoupling the locomotive from

the train at the arrival; δdhd
b,(i,j) denotes the time for deadheading from the end

of i to the start of train j; δcpl
j denotes the time for coupling the locomotive to

the train at the start of j.
Note that the driving time δtrp

i is assumed to be independent of the actual
locomotive class, whereas the deadhead time δdhd

b,(i,j) is class dependent (since
diesel and electrical might use different routes). In the case of network-load
dependent travel times, δtrp

i gets replaced by δtrp
i,h , which gives the trip duration

of train i when starting in slice h. Finally, in the case of car transfers between
trains, the time for shunting a car from i to j, δshnt

i,j , needs to be taken into
account for the computation of the trip and deadhead durations.
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The goal of the problem is to compute feasible starting and arrival times of
the trains such that the operational costs are minimized. More concretely, two
cost components are considered. Let γcls

b be the cost for a locomotive of class b,
γdhd

b,(i,j) be the cost of a deadhead trip from i to j for locomotive class b. Typically,
the following ordering holds between the costs: γcls

b � γdhd
b,(i,j), that is, the most

important objective is to reduce the number of used locomotives, and then at a
subsidiary level, to minimize the total distance of all the deadhead trips.

Finally, recall that in this paper we tackle the most difficult variant of the train
scheduling problem from [1], that is, the variant with time windows (instead of
fixed starting and arrival times) and with network-load dependent travel times.
For the approach described in this paper, we do not consider the preliminary
step of the minimization of the number of missed car transfers as in [1], but
we fix the set of feasible car transfers as determined through some preliminary
computation. The reason is that the minimum number of missed car transfers
can, in practice, easily be done by an ILP approach or by a greedy heuristic [1].
Hence, we focus on the minimization of the operational costs, that is, the costs
for the locomotive usage and the deadhead trips.

2.3 Benchmark Instances

For our computational tests we used eight instances, five of which were also used
as test instances in [1]. The names and the characteristics of these five instances
are as follows.

– A, with 42 trains, 3 locomotive classes
– B, with 82 trains, 3 locomotive classes
– C, with 120 trains, 4 locomotive classes
– KV, with 340 trains, 6 locomotive classes
– EW, with 727 trains, 6 locomotive classes

From each of these instances, we obtain additional ones by imposing different
ranges for the time windows. In particular, for each of the fixed starting and
arrival times we allow symmetric time windows centered at these values from
the set {±0,±10,±30,±60,±120} minutes.

An additional three instances have been used for tuning the parameters of the
heuristic algorithms. The characteristics of these instances are as follows.

– R1-101-3, with 101 trains, 3 locomotive classes
– R2-137-6, with 137 trains, 6 locomotive classes
– R3-295-5, with 295 trains, 5 locomotive classes

Since we used iterated F-race [4], an automated tuning tool, it was desirable
to derive a larger set of instances from these three. Hence, we selected the time
windows as follows. For R3-295-5, R2-137-6, and R1-101-3, we selected as time
windows the integers from [0, 150] that can be divided by 2, 3, and 6, respectively;
this results in 75, 50, and 25 instances, respectively. Note that the larger the base
instance the more derived instances are available. This was done in order to bias
the choice of the parameter settings towards better solving large instances.
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3 Greedy Algorithms

For effectively tackling the CVSPTW variant with network-load dependent travel
times, an essential ingredient for the ILP-based approach [1] has been a ran-
domized PGreedy-type algorithm [5]. This algorithm, called g-CVSPTW, forms
the basis for the further developments and it is described next.

3.1 The g-CVSPTW Heuristic

g-CVSPTW assumes a fixed set of car transfers as input and it seeks to minimize the
operating costs. g-CVSPTW iteratively generates cyclic schedules for locomotives
repeating the following series of steps until all trips are scheduled.

1. Step 1: Locomotive selection. First, a locomotive class is chosen. The
choice is based on two factors: (i) the capability Nb, which is the number
of trains that can be served by a locomotive from class b, and γcls

b . Each
locomotive class is scored by the ratio Nb/γcls

b . A locomotive class with the
highest ratio is chosen.

2. Step 2: Start trip selection. Among the still unscheduled trips, we select
one with the highest number of deadhead trips that use a locomotive of the
same class b as selected in step 1; ties are broken randomly.

3. Step 3: Starting time selection. Next, the starting time ti of the trip
is taken from the interval [ti, ti]. ti is chosen such that the train arrival
time is the earliest possible. (Recall that since we have netload dependent
driving times, we need to subdivide the interval [ti, ti] in dependence of
the time slices.) After fixing the starting time, the impact of this decision
on other starting time windows needs to be propagated. This update is
necessary, if there is some trip j with (i, j) or (j, i) ∈ P . For this task, a
constraint propagation algorithm was implemented to propagate the effect
of the decisions through the network.

4. Step 4: Deadhead trip selection. Next, a shortest deadhead trip to the
start of the next train is chosen for the locomotive.

g-CVSPTW starts with steps 1 and 2 and then cycles through steps 3 and 4
until no trip can be added anymore to the locomotive’s schedule. In particu-
lar, the construction is stopped if no trip can be accommodated within the 24
hours cycle (recall that g-CVSPTW uses a maximum 24 hour cycle length for each
locomotive).

Instead of making deterministic choices in steps 1, 2, and 4, g-CVSPTW ac-
tually uses randomized greedy values, in spirit similar to the noising method
[6]. Before doing the choice, the concerned greedy values are multiplied by a
value that is generated randomly according to a uniform distribution in [10000∗
(1 − NOISE), 10000], where NOISE is a parameter from the range [0, 1]. De-
cisions are then taken deterministically based on the perturbed greedy values,
breaking remaining ties randomly. The main rationale for using the randomiza-
tion in the greedy heuristic is to allow the generation of a large set of different
solutions.
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3.2 Modified Greedy Heuristic

As a first step in the road to improved heuristic algorithms, we modified
g-CVSPTW, based on the previous experience with it, resulting in the mg-CVSPTW
heuristic.

The first modification is to add a parameter v to weigh the importance of the
locomotive capability and we now use the ratio (Nb)v/γcls

b for the computation
of the greedy values.

The second modification derives an additional greedy value for biasing the
solution construction. It is based on the observation that the choice of a trip
restricts in very different ways the number of possible trips that feasibly could
be added to a locomotive cycle. In the extreme case, locomotives contain only
one trip, since it is infeasible to assign more trips within the 24 hour cycle
of a locomotive. (We call such trips isolated.) Hence, we define for each trip i
its sociability score si, which counts the number of other trips that could be
served by a locomotive in a same cycle with trip i; for isolated trips, this score
is zero.

A third modification is to change the order of steps 1 and 2 in g-CVSPTW,
together with a more deterministic solution construction. For this modification,
now trips are pre-ordered and chosen deterministically in the given order. The
ordering is defined in a lexicographic way by (i) considering the number of lo-
comotive classes able to serve the trip (the smaller, the higher the rank) and
(ii) the sociability score of each trip (the smaller the score the higher the rank).
In the construction process, mg-CVSPTW first chooses the starting trip in non-
increasing order of the ranks and then fixes the locomotive class. There are
two reasons why this modification was deemed to be helpful. Firstly, in this
way the most constraining decisions are done first, postponing the ones with
more flexibility; secondly, by selecting among a smaller set of candidates, we
expected to speed-up the construction process. In fact, we observed that the
computation times for the solutions construction decreased by a factor of about
five.

Once the first trip and the locomotive class selection is done, the modified
greedy heuristic continues iteratively with steps 3 and 4 as g-CVSPTW.

3.3 Locomotive Type Exchange Heuristic

A common way of improving solutions returned by a construction method is
to improve them by some type of local search. Since the development of very
effective local search algorithms can be rather time consuming, we limited the
local search to locomotive class exchanges: the idea is to try to replace the
locomotive of each tour by a cheaper one. The local search procedure works
as follows. First, all locomotive classes are sorted according to non-decreasing
costs into a list c = 〈c0, c1, c|B|〉. Then, for all cycles that use a locomotive
of class i we check whether the locomotive of cost ci can be replaced by a
cheaper locomotive, that is, by one of costs c0, . . . , ci−1 (starting with index
0). If this is possible, the substitution is applied and the next cyclic tour is
considered.
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procedure Iterated Greedy
s = GenerateInitialSolution
repeat

sp = DestructionPhase(s)
s′ = ConstructionPhase(sp)
s′′ = LocalSearch(s′) % Optional local search phase
s = AcceptanceCriterion(s, s′′)

until termination condition met

Fig. 1. Algorithmic scheme of iterated greedy with optional local search phase

4 Iterated Greedy Algorithms

As said previously, a main motivation for the randomization of the greedy steps
in g-CVSPTW and in mg-CVSPTW is to allow to construct many different solutions.
However, this results in independent applications of a heuristic, an approach
which for many problems does not lead to excellent performance. Hence, we use
Iterated Greedy (IG) as another way for iterating over construction heuristics.
The central idea of IG is to avoid to repeat a greedy construction from scratch,
but rather to keep parts of solutions between successive solution constructions
[7,3]. This is done by first destructing a part of a current complete solutions and
then to reconstruct from the resulting partial solution a new complete solution.
This new solution is accepted as the new incumbent solution according to some
acceptance criterion. For a generic algorithmic outline of IG see Figure 1.

The IG algorithm adds additional parameters. Directly linked to the IG heuris-
tic is the choice by how much a complete candidate solution should be destructed;
here, we use the parameter destruction ratio d. It determines the number of loco-
motive cycles that are removed from the current solution: if Nl is the number of
locomotives in the current solution, then 	d · Nl
 randomly selected locomotives
are removed from the current solution. For the re-construction of a complete
solution (and the construction of the initial solution), we use the mg-CVSPTW
heuristic, which proved to be more effective than g-CVSPTW.

The acceptance criterion uses the well-known Metropolis rule known from
simulated annealing. A candidate solution that is better or of equal quality to
the current candidate solution is deterministically accepted; a worse solution is
accepted with a probability given by exp{−∆/T }, where ∆ is the cost difference
between the new and the current solution and T = ν ·f(s∗), where s∗ is the best
solution found so far. Note that in the acceptance criterion no annealing is used.

The resulting algorithm we call IG-CVSPTW. Our algorithm uses one additional
feature, which was previously not used in IG algorithms. Instead of only recon-
structing one complete solution, IG-CVSPTW generates from one partial solution
Ir ≥ 1 new solutions. This is done since generating the correct time windows
for the partial solutions is relatively computation time intensive due to the con-
straint propagation for narrowing the time windows.

Clearly, as for g-CVSPTW, it is also desirable for IG-CVSPTW to consider the
hybridization of the algorithm with a local search, and, hence, we also study
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Table 1. Parameter settings obtained from iterative F-race for greedy and IG heuristics
with and without local search (LS). See the text for more details.

algorithm parameter range selected value

without LS with LS

mg-CVSPTW NOISE [0, 1] 0.67 0.15
v [0, 10] 1.8 6.3

IG NOISE [0, 1] 0.59 0.57
v [0, 10] 9.4 2.9
d [0.01, 1] 0.12 0.074
ν [0, 0.05] 0.046 0.019
Ir [1, 50] 9 25

this feature. Adding local search to IG is straightforward by improving each
reconstructed solution, as indicated by the optional LocalSearch(s′) procedure in
Figure 1. As for mg-CVSPTW, we use the locomotive class exchange local search.

5 Experimental Results for Greedy and Iterated Greedy

In this section, we report on the experimental results and the range of improve-
ments that we obtained with the extensions of the greedy heuristic. Since the
clearest differences in performance have been observed on the two largest base
instances, we focus on these two in the discussion of the experimental results.

5.1 Experimental Setup

All the codes were written in Java and share the same data structures. The code
was compiled and executed using JDK 1.6.0 05. The experiments were run on
computing nodes each with two quad-core XEON E5410 CPUs running at 2.33
GHz and 8 GB RAM. Due to the sequential implementation of the algorithms,
each execution makes only use of one single core.

Each algorithm was first tuned by an automatic tuning algorithm called iter-
ative F-race [4]; the only exception is g-CVSPTW, for which the pre-fixed setting
of NOISE was used. The three instances R1-101-3, R2-137-6, and R3-295-5
were used as training instances for tuning, using the time windows as explained
in Section 2.3. Before tuning, the order of the instances is randomized. The
computation time for all tuning instances was set to 300 CPU seconds, which
corresponds approximately to the time g-CVSPTW requires to generate 10 000 so-
lutions for base instance R3-295-5. Iterative F-race is then run for a maximum of
five iterations and in each iteration 100 candidate configurations are generated,
that is, a total of 500 configurations for each algorithm are tested. Table 1 gives
the range of values considered and the finally chosen ones by iterative F-race.

5.2 Experimental Results

For an experimental evaluation of the five algorithms, we have run each of them
30 times on the 25 test instances (for each of the five base instances 5 settings of
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Fig. 2. Development of the solution quality over time for g-CVSPTW (g), mg-CVSPTW (g i),
mg-LS-CVSPTW (g ls), IG-CVSPTW (ig), and IG-LS-CVSPTW (ig ls) for instances KV-10 (top
left), KV-60 (top right), EW-10 (bottom left), and EW-60 (bottom right); the numbers
after the instance identifier indicate the time window range chosen. The variability of
the averages is low as shown for the solutions after 100 CPU seconds (instances KV-*)
and 1000 CPU seconds (instances EW-*) by the boxplots in Figure 3.

time windows have been considered). Each algorithm was run for the same max-
imum computation time as required by g-CVSPTW to construct 10 000 solutions.
In Figure 2, we show for each of the algorithms the development of the average
solution quality across 30 independent trials over time. The plots show that ini-
tially the solution quality improves very quickly and then the curves flatten off.
However, especially the IG variants still show further improvements over time.
The differences of the average solution quality reached by the algorithms are
rather strong with the best performing one being IG-LS-CVSPTW. The boxplots,
which are given in Figure 3, also indicate that the variability of each algorithm’s
final performance is very low. Hence, the significance of the differences could
also be confirmed by statistical tests: all pairwise differences between the final
solution quality reached by the algorithms are statistically significant according
to the Wilcoxon test using Holms correction for the multiple comparisons; the
only exception is for instance KV-10, where the differences between IG-CVSPTW
and IG-LS-CVSPTW were not significant. In fact, also on few smaller instances,
the differences between IG-CVSPTW and IG-LS-CVSPTW are not significant.
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Fig. 3. Boxplots of the final performance after 100 CPU seconds for instances KV-10
(top left) and KV-60 (top right), and 1000 CPU seconds for instances EW-10 (bottom
left) and EW-60 (bottom right). The y-axis shows the solution cost reached. For the
explanation of the abbreviations see the caption of Figure 2.

An important result of this comparison is that the improvement of the com-
putational results over the repeated application of g-CVSPTW is very strong. For
most instances, the final costs found by IG-LS-CVSPTW were about 10% to 20%
lower than those reached by g-CVSPTW. Typically, the same final solution quality
as that of g-CVSPTW, was reached by IG-CVSPTW or IG-LS-CVSPTW in less than
a hundredth of the maximum time taken by g-CVSPTW.

6 Iterated Ants

The strong improvements by the IG algorithms motivated us to consider ex-
tensions that might yield further performance improvements. Given the strong
importance of the constructive part, we decided to consider a hybrid between two
constructive SLS methods: IG and ant colony optimization (ACO) algorithms;
the resulting hybrid algorithm is called iterated ants [8]. The central idea of it-
erated ants is to make each ant in the ACO algorithm follow the steps of the IG
algorithm. The construction phase of the IG algorithm is then biased, as usual in
ACO algorithms, by pheromones and heuristic information. The ACO approach
we followed was based on a version of MAX–MIN Ant System (MMAS) that
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uses the pseudo-random proportional action choice rule known from Ant Colony
System (see [9] for more details) and each ant follows the steps of the modi-
fied greedy construction heuristic. The pheromone trails have been associated
to the choice of the next trip to be added to a locomotive’s schedule; that is, a
pheromone trail τij refers to the desirability of serving trip j after having done
trip i; the heuristic information is the inverse of the length of the deadhead trip
from i to j. This choice matches the usual ACO approach to the TSP.

Without going into further details on the parameters involved (which were the
usual ones arising in the ACO context plus the ones relevant for the IG part),
we summarize our main observations. The first is deceptive, in the sense that
the final configuration returned from iterated F-race had the importance of the
pheromone trails set to zero (Note that the action choice rules in ACO algorithms
are positively biased to choose components j for which the term τα

ij · η
β
ij is high,

where α is a parameter that weighs the influence of the pheromone trails. Setting
α = 0 actually has the effect of not considering the pheromone trails at all in
the solution construction.) However, the parameter weighting the influence of
the heuristic information was set to its maximum value in the considered range.
This is true for the variants with and without local search. Nevertheless, it is
still interesting to compare the performance of the “iterated ants” algorithms to
the IG ones since both use different rules for constructing complete candidate
solutions. Exemplary results for this comparison with plots of the development
of the solution quality over computation time are in Figure 4.

The overall best performing variant is IG-LS-CVSPTW. Across the 25 test in-
stances, it is statistically better than “iterated ants” with local search on 12
instances and on none statistically worse. The situation is less clear, when con-
sidering the variants without local search; here on some instances IG-CVSPTW
performs better than the “iterated ants” variant (such as the KV instance), while
the opposite is true on others (such as on the largest instance tested here, EW).

7 Discussion

A direct comparison of IG-LS-CVSPTW to the performance of the best ILP-based
approach in [1] would certainly be interesting. However, a direct comparison is,
at least with the current heuristic algorithm code, not straightforward because
of some minor differences in the constraints considered. In fact, in the greedy
heuristics, a maximum cycle length of 24 hours is imposed for the schedule of
each locomotive, which is not done in the ILP formulation: in the ILP formula-
tion a schedule cycle of a locomotive can be an arbitrary multiple of 24 hours.
Hence, the heuristic solutions generated within the 24 hour limit for each lo-
comotive is a subset of the ones considered by the ILP approach. Anyway, the
solutions generated by the heuristics are feasible for the ILP formulation, that
is, despite this difference, the heuristic solutions are valid upper bounds for the
ILP. The difficulty in comparing our solutions to the ILP ones is that the ILP
formulation allows possibly much better solutions to be reached. If we anyway
compare the solutions, then we can see that for the same instance–time window
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Fig. 4. Development of the solution quality over time for iterated greedy, iterated
greedy plus local search, iterated ants and iterated ants plus local search for instances
KV-10 (top left), KV-60 (top right), EW-10 (bottom left), and EW-60 (bottom right)

combination, the IG-LS-CVSPTW algorithm typically finds solutions which use the
same number of locomotives or one or two more than in available optimal solu-
tions. Additionally, our heuristics have the advantage that they are applicable to
very large instances, which are beyond the reach of the ILP-based approach. In
fact, already for the largest instance for which the ILP solver could still deliver
solutions in [1] (instance EW with time windows ±30), improved upper bounds
could be found by IG-LS-CVSPTW.

Our heuristic algorithms can generate good quality in relatively short compu-
tation times on the instances tested here, say a few minutes for the largest in-
stance tested here. Given more computation time, IG-CVSPTW and IG-LS-CVSPTW
can use this time effectively and further improve the quality of the solutions over
time. On the largest instance tested here, computation times up to four hours
have been considered to test the limiting behavior of the heuristics (see, for
example, the results given in Figure 4 on instance EW). The computational ef-
fort is, however, still lower than the one given to the ILP approach, which was
run for one CPU hour in parallel on eight cores of a similar machine as ours
(Cplex 10 makes effective use of multiple cores by parallelizing the branch-and-
bound tree computations.). In addition, there are still a number of possibilities
for improving the speed of the heuristic algorithms, ranging from the adoption
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of pre-processing techniques to reduce instance size (which is actually done for
the ILP model) to more fine-tuned implementations.

Concerning the results for the iterated ants, one may wonder, whether the
setting of α = 0 is an artifact of the tuning and whether on larger instances
the usage of pheromone trails would result into better performance. (Note that
the KV and EW instances are in part much larger than the ones used for tuning.)
To test this, we took the second ranked algorithm configuration from the race,
which had for both cases–with and without local search–settings of α around
one. However, on the two largest instances no significant improvements by using
pheromone trails in the solution construction have been identified.

The negative results of the tentative extension of IG to iterated ants allows
two different interpretations. On one side, it does not exclude that an iterated
ants approach or another population-based extension may further improve per-
formance. For example, different ways of defining the meaning of the pheromone
trails may be tested, such as associating locomotive types to trips. However,
significant further developments and tests would have to be done, time which
could be also used to further improve the simpler algorithm, for example, by us-
ing more elaborate construction heuristics or improved local search algorithms.
On the other side, these tests are also a confirmation that conceptually rather
simple algorithms are a good means to improve the performance of basic heuris-
tics especially in the context of real-world problems. In this sense, the results
here give also an example of how a bottom-up development of SLS algorithms,
which adds algorithm features in a step-by-step manner, is a viable approach to
obtain high performing yet conceptually simple algorithms.

8 Conclusions

In this paper we have developed a high performing stochastic local search algo-
rithm for a freight train scheduling problem arising in the strategical planning of
Deutsche Bahn AG. In particular, we have shown that a combination of an iter-
ated greedy heuristic with a simple local search algorithm yields very promising
performance. With this algorithm we now can obtain high quality solutions to
large problem instances, for which an approach based on a commercial solver
ILP solver is not effective anymore.

There are a number of directions in which this research could be extended. A
first is certainly the application and comparison of the iterated greedy and iter-
ated ants algorithms on very large instances. For tackling large instances, com-
putation time reductions may be obtained by adopting a pre-processing phase
to reduce the effective instance size tackled (this was also indicated by initial
tests). Another attractive possibility is to consider hybrids between the exact
solution methods and the iterated greedy algorithms. One way to do this is by
exploiting the very good performance of the commercial solver for small sized
instances: One may use the iterated greedy algorithm to define partial solutions
and compute their optimal extensions to complete ones by an ILP solver.
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Concerteé funded by the Scientific Research Directorate of the French Com-
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9. Stützle, T., Hoos, H.: MAX–MIN Ant System and local search for combinatorial
optimization problems. In: Voss, S., Martello, S., Osman, I.H., Roucairol, C. (eds.)
Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization,
pp. 137–154. Kluwer Academic Publishers, Dordrecht (1999)

http://www.hausdorff-research-institute.uni-bonn.de/files/preprints/2006transsci.pdf
http://www.hausdorff-research-institute.uni-bonn.de/files/preprints/2006transsci.pdf


On the Integration of a TSP Heuristic into

an EA for the Bi-objective Ring Star Problem

Arnaud Liefooghe1, Laetitia Jourdan1, Nicolas Jozefowiez2,3,
and El-Ghazali Talbi1

1 LIFL – CNRS – INRIA Lille-Nord Europe,
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Abstract. This paper discusses a new hybrid solution method for a
bi-objective routing problem, namely the bi-objective ring star prob-
lem. The bi-objective ring star problem is a generalization of the ring
star problem in which the assignment cost has been dissociated from
the cost of visiting a subset of nodes. Here, we investigate the possible
contribution of incorporating specialized TSP heuristics into a multi-
objective evolutionary algorithm. Experiments show that the use of this
hybridization scheme allows a strict improvement of the generated sets
of non-dominated solutions.

1 Introduction

The purpose of the Bi-objective Ring Star Problem (B-RSP) is to locate an ele-
mentary cycle, the so-called ring, on a subset of nodes of a graph while optimizing
two conflicting costs. First is the minimization of a ring cost, proportional to the
length of the cycle. Then, nodes that do not belong to the ring are all assigned to
visited ones so that the associated cost is minimal. The resulting assignment cost
is the second objective to be minimized. In spite of its natural bi-objective for-
mulation, this problem is generally investigated in a single-objective way, either
where both costs are combined [12] or where the assignment cost is treated as a
constraint [13]. Note that both versions of the problem have also been heuristi-
cally solved in [16,18]. As pointed out in [10], a large number of routing problems
are formulated as multi-objective optimization problems, and according to the
same paper, the B-RSP is a generalization of a mono-objective problem. In [15],
different multi-objective evolutionary algorithms have been proposed for the
B-RSP. Although the approaches were already encouraging, even compared to
state-of-the-art mono-objective methods, a few improvement points can be iden-
tified. First, a lack of efficiency has been detected on the ring cost throughout
the output solutions. Second, the population initialization strategy used within
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all the search methods was a bit rudimentary, each initial solution having ap-
proximately half of its nodes in the cycle. The challenge is then to overcome the
identified problems in order to improve the efficiency of those search methods.

An interesting property of the problem under consideration is that, given a
fixed set of visited nodes, the related assignment cost is always optimal. It is
not the case for the ring cost, for which a classical Traveling Salesman Prob-
lem (TSP) is still to be solved among the set of nodes that belong to the ring.
Then, once is decided which nodes are visited or not, an objective function is
much more difficult to optimize. However, a large number of efficient heuristic
methods has been proposed for the TSP. In this paper, our aim is to present
a hybrid metaheuristic combining a multi-objective evolutionary algorithm and
a problem-specific heuristic, initially designed for the TSP. Approaches where
a TSP heuristic is successfully integrated into a multi-objective evolutionary
algorithm can, for instance, be found in [8,9].

The reminder of the paper is organized as follows. In Section 2, we give the
necessary background for multi-objective optimization, we introduce the B-RSP
and we present a heuristic devoted to the TSP. The hybrid metaheuristic pro-
posed to solve the B-RSP is detailed in Section 3. In Section 4, computational
experiments are conducted. At last, conclusions and perspectives are drawn in
the last section.

2 Background

In this section, we first discuss multi-objective optimization and define some
related concepts. Then, we present the bi-objective ring star problem in details
and we introduce a heuristic devoted to the traveling salesman problem.

2.1 Multi-Objective Optimization

A general Multi-objective Optimization Problem (MOP) can be defined by a
set of n ≥ 2 objective functions f1, f2, . . . , fn; a set of feasible solutions in the
decision space, denoted by X ; and a set of feasible points in the objective space,
denoted by Z. Each function can be either minimized or maximized, but we
here assume that all n objective functions are to be minimized. To each decision
vector x ∈ X is assigned exactly one objective vector z ∈ Z on the basis of a
vector function f : X → Z with z = f(x) = (f1(x), f2(x), . . . , fn(x)).

Definition 1. An objective vector z ∈ Z weakly dominates another objective
vector z′ ∈ Z if and only if ∀i ∈ [1..n], zi ≤ z′i.

Definition 2. An objective vector z ∈ Z dominates another objective vector
z′ ∈ Z if and only if ∀i ∈ [1..n], zi ≤ z′i and ∃j ∈ [1..n] such as zj < z′j.

Definition 3. An objective vector z ∈ Z is non-dominated if and only if there
does not exist another objective vector z′ ∈ Z such that z′ dominates z.
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A solution x ∈ X is said to be efficient (or non-dominated) if f(x) is non-
dominated. The set of all efficient solutions is the efficient set, denoted by XE .
The set of all non-dominated vectors is the non-dominated front (or the trade-
off surface), denoted by ZN . A possible approach to solve a MOP consists of
finding or approximating a minimal set of efficient solutions, i.e. one solution
x ∈ XE for each non-dominated point z ∈ ZN such as f(x) = z (in case multiple
solutions map to the same non-dominated vector). Evolutionary algorithms are
commonly used to this end as they naturally find multiple and well-spread non-
dominated solutions in a single simulation run. The reader could refer to [3,4]
for more details about evolutionary multi-objective optimization.

2.2 The Bi-objective Ring Star Problem

The Bi-objective Ring Star Problem (B-RSP) can be described as follows. Let
G = (V, E, A) be a complete mixed graph where V = {v1, v2, . . . , vn} is a set of
vertexes, E = {[vi, vj ]|vi, vj ∈ V, i < j} is a set of edges, and A = {(vi, vj)|vi, vj ∈
V } is a set of arcs. Vertex v1 is the depot. To each edge [vi, vj ] ∈ E we assign a
non-negative ring cost cij , and to each arc (vi, vj) ∈ A we assign a non-negative
assignment cost dij . The B-RSP consists of locating a simple cycle through a
subset of nodes V ′ ⊂ V (with v1 ∈ V ′) while (i) minimizing the sum of the ring
costs related to all edges that belong to the cycle, and (ii) minimizing the sum
of the assignment costs of arcs directed from every non-visited node to a visited
one so that the associated cost is minimum. An example of solution is given in
Figure 1, where solid lines represent edges that belong to the ring and dashed
lines represent arcs of the assignments.

Fig. 1. An example of solution for the ring star problem

The first objective is called the ring cost and is defined as:∑
[vi,vj ]∈E

cijbij , (1)

where bij is a binary variable equal to 1 if and only if the edge [vi, vj ] belongs
to the cycle. The second objective, the assignment cost, can be computed as
follows: ∑

vi∈V \V ′

min
vj∈V ′

dij . (2)
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Let us remark that these two objectives are comparable only if we assume that
the ring cost and the assignment cost are commensurate one to another, what is
rarely the case in practice. Furthermore, the fact of privileging a cost compared
to the other is closely related to the decision-maker preferences. However, the
B-RSP is an NP-hard combinatorial problem since the particular case of vis-
iting the whole set of nodes is equivalent to a traditional Traveling Salesman
Problem (TSP).

2.3 GENIUS, a TSP Heuristic

A specificity of the B-RSP is that many TSP generally need to be solved. An
effective TSP heuristic method is thus rather appreciated in order to improve the
ring cost of a solution. There exists a large range of heuristics that are devoted to
the TSP. One of them is GENIUS, proposed by Gendreau et al. [6]. Briefly, GE-
NIUS contains a tour construction phase, called GENI, and a postoptimization
phase, called US. Starting with three arbitrary nodes, GENI inserts, at each it-
eration, an unrouted node between two of its p closest neighbors on the partially
constructed tour, where p is a user-controlled parameter. When inserting the
vertex, GENI also performs a local reoptimization of the tour. Once a complete
tour has been built, the US postoptimization procedure is repeatedly applied to
the tour until no further improvement is possible. During this procedure, nodes
are successively removed from the tour, and then reinserted, according to the
same rules used in the tour construction phase. The use of GENIUS can be seen
as a black-box mechanism integrated into the hybrid metaheuristic presented in
the next section, and could practically be replaced by another TSP heuristic.

3 A Hybrid Metaheuristic for the Bi-objective Ring Star
Problem

The main process of the Hybrid Metaheuristic (HM) proposed in the paper
to solve the B-RSP consists of an elitist multi-objective Evolutionary Algo-
rithm (EA). A first hybridization mechanism arises at the very beginning of
the HM, as the initial population is built thanks to a problem-specific heuris-
tic. This initial population is used as a starting point of the EA, so that both
methods cooperate in pipeline way. Second, an additional hybridization scheme
conditionally appears at every generation of the EA, where the ring cost of each
population member is attempted to be improved thanks to a TSP heuristic. Fi-
nally, the EA is itself hybrid, as it is divided into two different phases. Those
ones differ the one from the other at the selection and the replacement steps of
the EA. During both phases, a secondary population, the so-called archive, is
used to store every potentially efficient solutions found so far. The first phase
is compound of an elitist selection step where parent individuals are all selected
from the archive only. The replacement step is a generational one, i.e. the parent
population is replaced by the offspring one. This phase corresponds to the Simple
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Elitist Evolutionary Algorithm (SEEA) introduced in [15]. The main particular-
ity of SEEA is that no fitness assignment scheme is required, the population
being the only problem-independent parameter. The second phase is founded on
the Indicator-Based Evolutionary Algorithm proposed by Zitzler and Künzli [21].
The fitness assignment scheme of IBEA is based on a pairwise comparison of
population items by using a binary quality indicator I. Several indicators can
be used for such a purpose [21], and we here choose to use the binary additive
ε-indicator (Iε+) proposed in [23]. Iε+ gives the minimum factor by which a non-
dominated set A has to be translated in the objective space to weakly dominate
a non-dominated set B. The selection scheme for reproduction is a binary tour-
nament between randomly chosen individuals. The replacement strategy consists
of deleting, one-by-one, the worst individuals, and in updating the fitness values
of the remaining solutions each time there is a deletion; this is continued until
the required population size is reached. The first phase of the EA will allow to
find a rough approximation of the efficient set in a very short amount of time
whereas the second phase will rather be devoted to improve this set in a more
intensive way. The transition from Phase 1 to Phase 2 will occur as soon as the
archive of non-dominated solutions does not improve enough with regards to the
search scenario. The main steps of our HM are the following ones:

1. Initialization. Generate an initial population P of size N (see Section 3.2);
generate an efficient set approximation A with the non-dominated individu-
als contained in P ; create an empty offspring population P ′.

2. Selection. Repeat until |P ′| = N :
(Phase 1) Randomly select an individual from A and add it to the off-
spring population P ′.
(Phase 2) Select an individual thanks to a binary tournament selection
on P and add it to the offspring population P ′.

3. Recombination. Apply a recombination operator to pairs of individuals
contained in P ′ with a given probability pr (see Section 3.3).

4. Mutation. Apply a mutation operator to individuals contained in P ′ with
a given probability pm (see Section 3.4).

5. Fitness assignment.
(Phase 1) ∅.
(Phase 2) Calculate fitness values of any individual x contained in P∪P ′;
i.e. F (x) ←

∑
x′∈(P∪P ′)\{x} −e−I({x′},{x})/κ, where κ > 0 is a scaling

factor.
6. Replacement.

(Phase 1) P ← P ′; P ′ ← ∅.
(Phase 2) P ← P ∪P ′; P ′ ← ∅. Iterate the following steps until the size
of the population P does not exceed N :
– Choose an individual x� ∈ P with the smallest fitness value; i.e.

F (x�) ≤ F (x) for all x ∈ P .
– Remove x� from P .
– Update the fitness values of the individuals remaining in P ; i.e.

F (x) ← F (x) + e−I({x�},{x})/κ for all x ∈ P .
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7. Elitism. A ← non-dominated individuals of A ∪ P .
8. Improvement. If a given condition is satisfied, apply an improvement pro-

cedure on any individual contained in P (see Section 3.5).
9. Termination. If a stopping criteria is satisfied return A, else go to Step 2.

The principle of the HM is illustrated in Figure 2. According to the taxonomy
of hybrid metaheuristics proposed in [20], the HM proposed in this paper can be
classified on the high-level relay hybrid class, where self-contained heuristics are
executed in sequence. The problem-specific components are explained in details
below.

Start

Return A

Generate population P
(Insert and Shake heuristic)

Create archive A with
non-dominated solution of P

Random selection on A

Generational replacement

Update A with
non-dominated solutions of P

If a given condition is 
satisfied, apply GENIUS on P

Indicator-based
fitness assignment

Merge parent and offspring
populations and delete worst

solutions one by one

Binary tournament
selection on P

Variation operators
(recombination, mutation)

Stop?

EA

YESNO

Phase 1 Phase 2

Fig. 2. Flowchart of the Hybrid Metaheuristic (HM)
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Vertex v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Random key 0 0.7 - 0.3 - 0.8 0.2 - 0.5 -

Fig. 3. A RSP solution represented by random keys

3.1 Solution Encoding

The representation of a B-RSP solution is based on the random keys mechanism
proposed by Bean [1]. A random key ki ∈ [0, 1[ is assigned to every node vi that
belongs to the ring. A special value is assigned to unvisited nodes. Thus, the
ring route associated to a solution corresponds to the nodes read according to
their random keys in the increasing order; i.e. if ki < kj , then vj comes after vi.
A possible representation for the cycle (v1,v7,v4,v9,v2,v6) is given in Figure 3.
Nodes v3,v5,v8 and v10 are assigned to a visited node in such a way that the
associated assignment cost is minimum.

3.2 Population Initialization

An initial population of N individuals is built by means of repeatedly solving
a mono-objective problem closely linked to the B-RSP. This problem, that will
be denoted by Ring Cost Constrained RSP (RCC-RSP), consists of minimizing
the assignment cost only, while satisfying an upper bound on the ring cost. It
is obtained by removing the ring cost from the set of objective functions of the
B-RSP, and by adding a new constraint stipulating that the ring cost cannot
exceed a given limit cmax. A search mechanism is iterated with distinct cmax

values such that the set of resulting problems corresponds to different part of
the objective space.

In order to approximately solve a given RCC-RSP, we use the Insert and
Shake Heuristic (ISH), initially proposed by Gendreau et al. [7] for a single-
objective routing problem called the selective TSP. This method combines a TSP
tour extension heuristic described in Rosenkrantz et al. [19] and the GENIUS
procedure described in Section 2.3. ISH gradually extends a tour T until no other
node can be added without violating a given ring cost limit cmax. At a given
step, the non-visited node to be inserted in T is chosen so that the ratio between
its current assignment cost and the increment on the global ring cost after its
insertion is minimum. Then, GENIUS is applied in an attempt to obtain a better
cycle on the nodes in T . If GENIUS fails, the procedure terminates. Otherwise,
more node insertions are attempted and the process is repeated. The steps to
build an initial population of solutions are the following ones:

1. GENIUS is applied to find a cycle containing all nodes in V , and this solution
is included in the population. Let c� be the ring cost of this solution. Set
α ← c�

N−1 , cmax ← c� − α and i ← 1.
2. If i > N , stop. Otherwise, generate a RCC-RSP solution by means of ISH

and insert this solution into the population.
3. Set cmax ← cmax − α, and i ← i + 1. Go to Step 2.
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Fig. 4. Illustration of the population initialization heuristic

This initialization strategy is illustrated in Figure 4. Thanks to this heuristic,
the starting set of solutions will already be both (i) quite efficient, and (ii) well-
spread on the objective space.

3.3 Recombination Operator

The recombination operator is a quadratic crossover closely related to the one
proposed in [18]. Two randomly selected solutions x1 and x2 are first divided
according to a particular position. Then, the first part of x1 is combined with the
second part of x2 to build a first offspring, and the first part of x2 is combined
with the second part of x1 to build a second offspring. Every node retains its
random key so that it enables an easy reconstruction of the new individuals.
Thanks to the random keys encoding mechanism, solutions having different ring
sizes can easily be recombined, even if the initial ring structures are generally
broken in the offspring solutions.

3.4 Mutation Operator

The mutation operator designed for the problem under consideration consists of
the following strategy. A node v� ∈ V \ {v1} is selected at random. Therefore,
two cases may arise. First, if v� belongs to the ring, it is removed and then
belongs to the set of unvisited nodes. Second, if v� does not belong to the cycle,
it is added. The position to insert v� is chosen so that the increment on the ring
cost is minimum.
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3.5 Improvement Procedure

The improvement procedure consists of improving the ring cost of the current
population by applying GENIUS on any of its members. The main issue is now
to determine when this heuristic might start in order to find the good trade-off
between the efficiency and the effectiveness of GENIUS. To do so, we decide to
launch it only if no more than n solutions per iteration have been included in
the archive during the last M consecutive generations. Hence, we hope that the
improved population will produce new non-dominated solutions and will help to
build more interesting individuals in the future steps of the HM.

4 Computational Experiments

In order to assess the effectiveness of our method, we will measure its perfor-
mance in comparison to the ACS method proposed in [15]. The latter is an
auto-adaptive method based on a simple elitist evolutionary algorithm and a
population-based local search. It has been shown to be particularly efficient to
solve the RSP as a bi-objective problem. To quantity the impact of GENIUS
on our HM, we also implemented a more basic version in which GENIUS is
not involved, neither in the improvement step nor in the initialization step.
This other hybrid metaheuristic will be denoted by HM2 in the remainder of
the paper. All the algorithms have been implemented under the ParadisEO-
MOEO library1 [14] and share the same base components for a fair comparison
between them. Computational runs were performed under Linux on an Intel
Core 2 Duo 6600 (2 × 2.40 GHz) machine, with 2 GB RAM.

4.1 Performance Assessment

Experiments have been conducted on a set of benchmark test instances taken
from the TSPLIB2 [17]. These instances involve between 51 and 264 nodes. The
number at the end of an instance’s name represents the number of nodes for the
instance under consideration. Let lij denote the distance between two nodes vi

and vj of a TSPLIB file. Then, the ring cost cij and the assignment cost dij have
both been set to lij for every pair of nodes vi and vj .

For each search method, a set of 20 runs per instance has been performed.
In order to evaluate the quality of the non-dominated front approximations,
we follow the protocol given by Knowles et al. [11]. For a given instance, we
first compute a reference set Z�

N of non-dominated points extracted from the
union of all the fronts we obtained during our experiments and the best non-
dominated set taken from [15]3. Second, we define a point zmax = (zmax

1 , zmax
2 ),

where zmax
1 (respectively zmax

2 ) denotes the upper bound of the first (respectively
second) objective in the whole non-dominated front approximations. Then, to

1 ParadisEO is available at http://paradiseo.gforge.inria.fr
2 http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
3 These results are available at http://www.lifl.fr/∼liefooga/rsp/

http://paradiseo.gforge.inria.fr
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.lifl.fr/~liefooga/rsp/
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measure the quality of an output set A in comparison to Z�
N , we compute the

difference between these two sets by using the unary hypervolume metric [22],
(1.05 × zmax

1 , 1.05 × zmax
2 ) being the reference point. The hypervolume differ-

ence indicator (I−H) computes the portion of the objective space that is weakly
dominated by Z�

N and not by A. The more this measure is close to 0, the better
is the approximation A. Furthermore, we also consider one of the ε-indicators
proposed in [23]. The unary additive ε-indicator (I1ε+) gives the minimum fac-
tor by which an approximation A has to be translated in the objective space
to weakly dominate the reference set Z�

N . As a consequence, for each test in-
stance, we obtain 20 I−H measures and 20 Iε+ measures, corresponding to the
20 runs, per algorithm. As suggested by Knowles et al. [11], once all these
values are computed, we perform a statistical analysis on pairs of optimiza-
tion methods for a comparison on a specific test instance. To this end, we use
the Mann-Whitney statistical test as described in [11], with a p-value lower
than 5%. Hence, for a specific test instance, and according to the p-value and
to the metric under consideration, this statistical test reveals if the sample of
approximation sets obtained by a given search method is significantly better
than the one obtained by another search method, or if there is no significant
difference between both. Note that all the performance assessment procedures
have been achieved using the performance assessment tool suite provided in
PISA4 [2].

4.2 Parameter Setting

For each investigated metaheuristic, the search process stops after a certain
amount of run time. As shown in Table 1, this stopping criteria has been ar-
bitrary set according to the size of the problem instance to be solved. Next,
the population size N is set to 100; the recombination probability pr is set to
0.25 and the mutation probability pm is set to 1.0. Following [21], the scal-
ing factor κ is set to 0.05. The improvement procedure of HM is launched
only if the number of elements received by the archive is less than 1.0% of
its current size for |V | consecutive iterations, where |V | is the number of nodes
for the instance under consideration. Finally, the GENIUS parameter p is
set to 7.

Table 1. Stopping criteria: running time

Instance Running
time

eil51 20”
st70 1’
kroA100 2’
bier127 5’

Instance Running
time

kroA150 10’
kroA200 20’
pr264 30’

4 The package is available at http://www.tik.ee.ethz.ch/pisa/assessment.html

http://www.tik.ee.ethz.ch/pisa/assessment.html
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Table 2. Comparison of HM, HM2 and ACS [15] according to the I−
H and the Iε+

metrics by using a Mann-Whitney statistical test with a p-value of 5%. For the metric
under consideration, either the results of the algorithm located at a specific row are
significantly better than those of the algorithm located at a specific column (	), either
they are worse (≺), or there is no significant difference between both (≡).

I−
H Iε+

HM HM2 ACS HM HM2 ACS

eil51 HM - 	 	 - 	 	
HM2 ≺ - ≡ ≺ - ≡
ACS ≺ ≡ - ≺ ≡ -

st70 HM - 	 	 - 	 	
HM2 ≺ - ≡ ≺ - ≡
ACS ≺ ≡ - ≺ ≡ -

kroA100 HM - 	 	 - 	 	
HM2 ≺ - ≺ ≺ - ≺
ACS ≺ 	 - ≺ 	 -

bier127 HM - 	 	 - 	 	
HM2 ≺ - 	 ≺ - 	
ACS ≺ ≺ - ≺ ≺ -

kroA150 HM - 	 	 - 	 	
HM2 ≺ - ≡ ≺ - ≺
ACS ≺ ≡ - ≺ 	 -

kroA200 HM - 	 	 - 	 	
HM2 ≺ - ≡ ≺ - ≺
ACS ≺ ≡ - ≺ 	 -

pr264 HM - 	 	 - 	 	
HM2 ≺ - ≡ ≺ - ≺
ACS ≺ ≡ - ≺ 	 -

4.3 Results and Discussion

First of all, note that we initially experimented some algorithm versions where
only the first or the second phase of the EA is involved, with and without GE-
NIUS. But the resulting metaheuristics turned out to be significantly outper-
formed by HM and HM2. The comparison of results obtained by HM, HM2 and
ACS are presented in Table 2. According to both indicators (I−H and Iε+), HM
is statistically better than any other search methods on every instance we inves-
tigated. Besides, the difference between HM2 and ACS is often not significant
according to the I−H metric, whereas ACS generally outperforms HM2 according
to the Iε+ metric. The only instance for which HM2 performs statistically higher
than ACS is the bier127 instance, where it obtains better values for both metrics.
In order to study on which part of the trade-off surface the differences between
HM, HM2 and ACS appear, examples of empirical attainment functions [5] are
given in Figure 5 and Figure 6 for the bier127 instance. They represent the limit
of the objective space that is attained by at least 90% of the runs for every search
method. For the instance under consideration, we can see that HM seems to be
more capable of finding solutions having both a large number of visited nodes
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Fig. 5. 90%-attainment surface plot obtained by the approximation sets found by HM
and ACS [15] for the bier127 test instance
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Fig. 6. 90%-attainment surface plot obtained by the approximation sets found by HM
and HM2 for the bier127 test instance

and a good ring cost. Thus, the superiority of HM relatively to HM2 reveals
the benefit of integrating a TSP heuristic, here symbolized by GENIUS, into
our EA for the problem to be solved. Moreover, despite its relative simplicity
in comparison to ACS, the HM is quite effective to solve the B-RSP, especially
to find solutions having a low ring cost. This indicates that the hybridization
scheme largely improves the method and reveals that the HM introduced in this
paper outperforms the metaheuristics proposed so far to solve the RSP as a
bi-objective optimization problem.
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5 Conclusion and Perspectives

In this paper, a new hybrid metaheuristic has been proposed to approximate
the efficient set of a multi-objective routing problem called the bi-objective ring
star problem. This problem is commonly investigated in a single-objective way,
either where both objectives are aggregated, or where one objective is regarded
as a constraint. However, within the frame of the ring star problem, many trav-
eling salesman problems generally need to be solved. The purpose of the hybrid
metaheuristic proposed here is then to integrate a heuristic algorithm for the
traveling salesman problem, namely GENIUS, into a multi-objective evolution-
ary algorithm to solve the bi-objective ring star problem as a whole. The hybrid
search method starts with a problem-specific heuristic to generate an initial set
of solutions, and continues with a two-phase elitist evolutionary algorithm hy-
bridized to the GENIUS heuristic. The latter is launched to intensify the search
in an auto-adaptive manner, according to the convergence scenario of the main
process. Experiments were conducted on a set of benchmark test instances, and
validated the contribution of the traveling salesman problem heuristic into the
hybrid method. They also reveal that the metaheuristic proposed in the paper
largely outperforms our previous investigations for resolving the bi-objective ring
star problem. As a next step, we will experiment other strategies to scale the
GENIUS application factor in order to study the influence of this parameter
on the global performance of our method. We will also try to replace GENIUS
by other kinds of traveling salesman problem heuristics, or even exact methods,
within our hybrid metaheuristic to assert the genericity of our method. More-
over, it could be interesting to design a more universal model of hybridization
to solve multi-objective optimization problems, where both problem-specific and
meta methods could be integrated.
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14032 CAEN Cedex, France

Abstract. Weighted CSPs (Constraint Satisfaction Problems) are used
to model and to solve constraint optimization problems using tree search
or local search methods that use large neighborhoods. For the last ones,
selecting the neighborhood to explore is crucial. Some heuristics defined
for CSP, as ConflictVar, are based on conflicts. In this article, we pro-
pose new neighborhood heuristics for WCSP, not only based on conflicts,
but also depending on the topology of the constraints graph and violation
costs of constraints. Experiments performed with VNS/LDS+CP, a par-
ticular instance of VNS (Variable Neighborhood Search) we developed,
show that our heuristics clearly outperform ConflictVar.

1 Introduction

Weighted Constraint Satisfaction Problems formalism [6,14] is a generic frame-
work used to model and to solve constraint optimization problems which al-
lows to deal with over-constrained problems and preferences between solutions.
WCSP are solved by local, hybrid or tree search methods. Hybrid methods, by
combining advantages of two others, provide a good trade-off between computing
times and quality of solutions.

For local search methods that use large neighborhoods, the design of a neigh-
borhood heuristic is crucial, since it chooses parts of the search space to explore
in order to find solutions of better quality. However, for an effective tuning,
defining crafted neighborhoods requires deep specific knowledge of the problem,
as well as a lot of experiments. To our knowledge, the few heuristics defined
for CSP, as ConflictVar, are based on conflicts (a variable is conflicted if it is
related to at least one violated constraint).

In this paper, we propose new neighborhood heuristics dedicated to WCSP,
not only based on conflicts, but also exploiting the topology of the constraint
graph and violation costs of constraints. Experiments have been performed on
real life instances (CELAR) and random instances (GRAPH) using VNS/LDS+
CP (a particular instance of VNS [11] we developed for solving anytime prob-
lems [9,10]). These experiments show that our heuristics clearly outperform
ConflictVar.

First, we present WCSP formalism (Section 2), then we give an overview
of VNS/LDS+CP and recall neighborhood heuristics for CSP (Section 3). New

M.J. Blesa et al. (Eds.): HM 2008, LNCS 5296, pp. 131–145, 2008.
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neighborhood heuristics are described in Section 4, and experiments in Section 5.
Finally, we conclude.

2 Weighted Constraint Satisfaction Problems

A Weighted Constraint Satisfaction Problem (WCSP) is defined by a quadruplet
(X ,D, C, k), with X = {x1, ..., xn} the set of variables (of size n), D = {d1, ..., dn}
their finite domains (the maximal domain size is noted d) and S(k�) its valuation
structure. S(k�) is a triplet ([0,1,...,k�], ⊕,≥) where: k� is a natural number in
[1, ..,∞], ⊕ is defined by: a⊕b = min(k�, a+b) and ≥ is the standard order oper-
ator among naturals. C is the set (of size e) of constraints. Each constraint c ∈ C,
is defined on a subset Xc ⊆ X of related variables. A↓Xc is the set of assignments
for these variables. Each c ∈ C is defined by a function fc :

∏
xi∈Xc

di �→ [0, k�].
For a complete assignment A, if fc(AXc) = 0, c is said to be satisfied, else to
be violated. An assignment of xi to a value a is noted: (xi = a). A complete
assignment (or solution) A = (a1, ..., an) is an assignment of all variables; on the
contrary, it will be called a partial assignment. The cost of a complete assign-
ment A = (a1, ..., an) is noted: V(A) =

∑
c∈C fc(A↓Xc). The objective is to find

a complete assignment of minimal cost: minA∈d1×d2×...×dnV(A).

3 VNS/LDS+CP

VNS/LDS+CP [8,9] is a local search method based on a Variable Neighborhood
Search method with approximated decompositions (VNDS) [2]. Neighborhoods
are obtained by unfixing a part of the current solution according to a neighbor-
hood heuristic. Then the exploration of the search space related to the unfixed
part of the current solution is performed by a partial tree search (LDS, [3]) with
constraint propagation (CP). VNS/LDS+CP has been developed for solving any-
time problems [7,9] and successfully applied to on-line resources allocation for
ATM (Asynchronous Transfer Mode) networks with rerouting [10].

3.1 Principles

Algorithm 1 shows the pseudo-code of VNS/LDS+CP. It starts from an initial so-
lution s which is randomly generated. A subset of k variables (k is the dimension
of the neighborhood) is selected by the neighborhood heuristic Hneighborhood
in Nk (a set of all subsets of k variables among X ) (line 5). A partial assign-
ment A is generated from the current solution s by unassigning the k selected
variables; the (n − k) non-selected variables keep their current value in s (line
6). Then, unassigned variables are rebuilt by a partial tree search, LDS+CP
combined with constraint propagation based on computation of lower bounds.
If LDS+CP finds a solution of better quality s′ in the neighborhood of s (line
8), then s′ becomes the current solution and k is reset to kinit (lines 9-10). Oth-
erwise, we look for improvements in the subspace where (k + 1) variables will
be unassigned (line 11). Indeed, higher is the dimension of the neighborhood,
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Algorithm 1. VNS/LDS+CP
function VNS(X , C, kinit, kmax, δmax) begin

s ← genRandomSol(X )1

k ← kinit2

iter ← 13

while (k < kmax) ∧ (notT imeOut) do4

Xunassigned ← Hneighborhood(Nk, s)5

A ← s\{(xi = a)s.t.xi ∈ Xunassigned}6

s′ ← NaryLDS+CP(A, Xunassigned, δmax, V(s), s)7

if V(s′) < V(s) then8

s ← s′
9

k ← kinit10

else k ← k + 111

return s12

end

larger is the search space and likely to contain better solutions than the current
one. However, since the size of neighborhoods can quickly grow, finding the best
neighbor may require a too expensive effort. That is why, in order to efficiently
explore parts of the search space, we use LDS+CP, a partial search combined
with constraint propagation. The algorithm stops when it reaches the maximal
dimension size allowed or the timeout (line 4).

The efficiency of VNS/LDS+CP strongly depends on the strategy used to
manage the neighborhood size, the heuristic which selects variables to unassign
and the method used to rebuild them. In [9], authors have shown the importance
of using a VNS strategy compared to a LNS one [15], and the relevance of
rebuilding unassigned variables with LDS+CP.

3.2 ConflictVar

Neighborhood heuristics are crucial, since they select parts of the search space
to explore in order to find solutions of better quality. But as quoted in the in-
troduction, designing efficient heuristics is difficult and problem-dependent. To
our knowledge, very few heuristics which are not driven by specific knowledge
exist. ConflictVar, defined for CSP, is the most popular one. It is based on
conflicted variables; for a complete assignment A, a variable is said to be con-
flicted if it occurs in at least one violated constraint c (fc(AXc) �= 0). Another
heuristic, called PGLNS [13], proposed for optimization problems, uses effects of
propagations to unassign variables that are inter-related.

For a given dimension of neighborhood k, first, ConflictVar randomly selects
k variables to unassign among conflicted variables (Xconflicted), then among all
non-conflicted variables (if k > #(Xconflicted)). Such a heuristic which is mainly
based on random choices, allows to diversify the search and to quickly escape
from local minima. The pseudo-code of ConflictVar is depicted in Algorithm 2;
the function getConflict returns for an assignment A, all conflicted variables.
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Algorithm 2. ConflictVar
function ConflictVar (A, X , C, k) begin

Xunassigned ← ∅1

Xconflicted ← getConflict(A, C)2

while #(Xunassigned) �= k do3

if Xconflicted �= ∅ then4

x ← randomPick(Xconflicted)5

Xconflicted ← Xconflicted\{x}6

else x ← randomPick(X\Xunassigned)7

Xunassigned ← Xunassigned ∪ {x}8

return Xunassigned9

end

ConflictVar is a simple heuristic and easy to implement since it is problem in-
dependent. However, this heuristic has two main drawbacks : it neither depends
on the topology of the constraint graph and neither takes into account viola-
tion costs of constraints. For example, ConflictVar may only select unrelated
variables (i.e. there is no constraint which is fully unassigned), and all selected
variables may also have high degree (i.e. they occur in many constraints). In
such a case, it is unlikely to rebuild them without violating many constraints,
and thus to find a better solution.

3.3 Limited Discrepancy Search

LDS (Limited Discrepancy Search) is a tree search method introduced by Harvey
and Ginsberg [3] allowing to iteratively solve binary CSP. Let H be a heuristic
that is trusted. The main idea of LDS is to follow H when exploring the search
tree, and to consider that H may mistake a small number (δ) of times. Thus,
δ discrepancies are allowed during search. For a given maximal number δmax

of discrepancies, LDS explores the tree in an iterative way with an increasing
number of discrepancies (from δ = 0 to δ = δmax). Depending on the value of
δmax, LDS is either a partial or a complete tree search. In [9], LDS have been
extended to n-ary optimization problems, and performs only the last iteration
(for δ = δmax). Algorithm 3 shows pseudo-code of n-ary LDS+CP where A is a
partial assignment, Xf is the set of future variables (i.e. not assigned yet), and
δ the number of discrepancies allowed.

If all variables are assigned (line 1), the best known solution is updated (line
2) and the current solution becomes the best one (line 3). Otherwise, a future
variable (i.e not assigned yet) xi ∈ Xf is selected (line 4); let di be the current
domain of xi ordered by a heuristic H . In the while loop, a discrepancy equal to j
corresponds to the value of rank (j+1). As long as there are enough discrepancies
(j ≤ δ) and enough values in di (di �= ∅), the value a of rank (j+1) is selected (line
7) and the remaining amount of discrepancies is set to (δ − j). Then constraint
propagation (see Section 3.4) is performed on values of future variables in order
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Algorithm 3. N-ary optimization LDS+CP
function NaryLDS+CP (A, Xf , δ, UB, bestS) begin

if Xf = ∅ then1

UB ← V(A)2

return A3

xi ← select-variable (Xf )4

j ← 05

while (di �= ∅) ∧ (j ≤ δ) do6

a ← select-value (di)7

if CP(A ∪ {(xi = a)}, Xf \ {xi}, UB) then8

bestS ← NaryLDS+CP(A ∪ {(xi = a)}, Xf \ {xi}, δ − j, UB, bestS)9

undoCP(A, (xi = a),Xf )10

di ← di \ {a},11

j ← j + 112

return bestS13

end

to prune values that can not extend A to a complete assignment with a valuation
better than the best known one. If there is no empty domain (line 8), search
continues (line 9). Otherwise (or when the exploration of the sub-space is over),
a backtrack is performed in order to undo all modifications performed during
the constraint propagation (line 10). Then the domain of variable xi is reduced
(line 11), and xi is assigned to the next value of its reduced domain (if it is not
an empty one) (line 6).

3.4 Constraint Propagation

The aim of Constraint Propagation is, given a partial assignment A, to remove
values of future variables (i.e. not assigned yet) that could not occur in a solution
with a better cost than the best known one. For this, at each node of the search
tree, for each value a for each future variable xi, a lower bound LB(A ∪ {(xi =
a)}) representing the aggregation of costs of constraints which will be necessarily
violated by any extension of (A ∪ {(xi = a)}) to a complete assignment is
computed. If LB(A ∪ {(xi = a)}) is greater than the cost of the best known
solution, a is removed (i.e. the subtree is pruned). Several methods (forward
checking and directed arc-consistency [5]) have been proposed to compute lower
bounds for binary constraints.

The function CP(A∪ {(xi = a)},Xf \ {xi},UB), used in Algorithm 3, estab-
lishes a local consistency at each node, and returns false if all values of a domain
are removed, true if not. According to the consistency level wished, filtering can
be carried out by various algorithms: Partial Forward Checking-Directed Arc
Consistency (PFC-DAC), Maintaining Reversible DAC (PFC-MRDAC) [5], or
Maintaining Full Directional Arc Consistency (MFDAC*) [6]. MFDAC* detects
more inconsistencies than PFC-(MR)DAC (see [6] for more details).
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4 Neighborhood Heuristics

In this section, we propose new neighborhood heuristics based on ConflictVar
and dedicated to solve constraint optimization problems modelled as WCSP. Our
heuristics make use of the topology of the constraint graph as well as violation
costs of constraints. First, we introduce a few definitions.

Definition 1. Neighboring variables, let x and y be two variables, x is a
neighbor of y if and only if x and y occur in a constraint. The set of all neigh-
boring variables of x is denoted neighbors(x).

Definition 2. Degree of a variable, let x be a variable, the degree of x, noted
deg(x) is equal to the cardinality of neighbors(x). For a complete assignment
A, the number of conflicted variables in the neighborhood of x will be noted
conflictDeg(x).

Definition 3. Degree of freedom of a variable, let A be a complete as-
signment, Xunassigned be a set of variables to unassign and x be a variable in
Xunassigned. The degree of freedom of x is equal to the number of variables in
neighbors(x) belonging to Xunassigned. If neighbors(x) ⊂ Xunassigned, the free-
dom degree of x is said to be maximal.

4.1 Extensions of ConflictVar

ConflictVar randomly selects a subset of conflicted variables independently of
the topology of the constraint graph. Each selected variable may have a degree of
freedom equal to zero. In this case, it is less likely that the rebuilding step finds
a new solution of better quality by rebuilding the unassigned part of the current
solution. In our experiments, we have noticed that, during the rebuilding step,
higher is the degree of freedom of a variable, more opportunities the rebuilding
step has to minimize inconsistencies. Thus, we propose to exploit the topology
of the constraint graph to define new neighborhood heuristics which maximize
degrees of freedom of selected variables.

Figures 1 shows some choices performed by our heuristics. Dashed lines cor-
respond to constraints satisfied by the current complete assignment A; others
constraints are violated. The first variable selected by the neighborhood heuris-
tics is in black; next selected ones are noted in gray. For each heuristic, the next
selected variable, will be chosen among variables in dashed.

1. ConflictVar-Connected randomly selects the next variable among conflicted
ones neighboring to those already selected (see figure 1a). The first variable is
randomly selected among conflicted ones.
2. ConflictVar-Star selects a first variable xc (in black) noted “center” (see
figure 1b), then it randomly selects variables among conflicted ones included in
neighbors(xc) (i.e. in gray). If all of them have been already selected, a new “cen-
ter” variable is generated among conflicted ones neighboring to already selected
variables (i.e. variables in dashed).
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a) ConflictVar-Connected b) ConflictVar-Star
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Fig. 1. Neighborhood heuristics

Algorithm 4. ConflictVar-Connected

function ConflictVar-Connected (A, X , C, k) begin
Xunassigned ← ∅1

Xallowed ← ∅2

Xconflicted ← getConflict(A, C)3

while #(Xunassigned) �= k do4

if Xallowed �= ∅ then x ← randomPick(Xallowed)56

else if Xconflicted �= ∅ then x ← randomPick(Xconflicted)78

else x ← randomPick(X\Xunassigned)9

Xunassigned ← Xunassigned ∪ {x}10

Xconflicted ← Xconflicted\{x}11

Xallowed ← (Xallowed\{x}) ∪ (neighbors(x) ∩ Xconflicted)12

return Xunassigned13

end

3. ConflictAndSatVar-Star, which extends ConflictVar-Star, enlarges when
all conflicted variables neighboring to the “center” variable have been selected,
the choice of variables to those among the non-conflicted ones neighboring to
the center. In figure 1c, the next variable to be chosen is the one in dashed.
4. ConflictVar-MaxDeg first, selects a variable among conflicted ones. Then,
next variables are chosen among ones (conflicted or non-conflicted) having a
maximal number of neighbors already selected (ties are randomly broken). In
figure 1d, each variable in dashed has two selected neighboring variables, whereas
other variables have only one.
5. ConflictVar-H-Cost uses violation costs of constraints to select variables to
unassign. See Section 4.6 for more details.

4.2 ConflictVar-Connected

The ConflictVar-Connected heuristic allows to increase to 1 minimal degrees
of freedom of selected variables. Its pseudo-code is detailed by Algorithm 4.

ConflictVar-Connected selects k variables to unassign. Each variable is ran-
domly selected among the first following nonempty subset:
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Algorithm 5. ConflictVar-Star
function ConflictVar-Star (A, X , C, k) begin

Xunassigned ← ∅1

Xallowed ← ∅2

Xconflicted ← getConflict(A, C)3

while #(Xunassigned) �= k do4

if Xallowed �= ∅ then x ← randomPick(Xallowed)56

else
x ← GetCenter(Xunassigned, Xconflicted)7

if x = null then8

if Xconflicted �= ∅ then x ← randomPick(Xconflicted)9

else x ← randomPick(X\Xunassigned)10

Xallowed ← (neighbors(x) ∩ Xconflicted)11

Xunassigned ← Xunassigned ∪ {x}12

Xconflicted ← Xconflicted\{x}13

Xallowed ← Xallowed\{x}14

return Xunassigned15

end
function GetCenter (Xunassigned, X ′)
begin

X ′′ ← ∪x∈Xunassigned(neighbors(x) ∩ X ′)16

if X ′′ �= ∅ then return randomPick(X ′′)17

return null18

end

1. the subset Xallowed of conflicted variables neighboring to already selected ones
(lines 5 and 6),
2. the subset of conflicted variables (lines 7 and 8),
3. the subset of not yet selected variables (X\Xunassigned) (line 9).
When a variable x is selected, it is added to Xunassigned (line 10), removed
(if required) from conflicted variables (line 11), and all conflicted variables in
neighbors(x) are allowed to be selected later (i.e. added to Xallowed) (line 12).

The degree of freedom of each selected variable is between a minimal value
equal to 1 (since all variables are connected) and a maximal value equal to its
degree. However, in our experiments, we have noticed that this maximal value
is never reached. Indeed, since the size of Xallowed grows quickly, probability for
a variable x and all its neighbors to be selected significantly decreases.

4.3 ConflictVar-Star

The heuristic ConflictVar-Star, which improves ConflictVar-Connected,
tries to maximize the degree of freedom of at least one selected variable. Its
pseudo-code is detailed by Algorithm 5.

The function GetCenter randomly selects a “center” variable among con-
flicted variables neighboring to selected ones.
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First, the heuristic ConflictVar-Star selects a center variable xc, then ran-
domly chooses next variables among conflicted ones in neighbors(xc). If all of
these are selected, a new center is chosen in the first following nonempty subset:
1. the subset of conflicted variables neighboring to selected ones (line 7),
2. the subset of conflicted variables among Xconflicted (line 9),
3. the subset of not selected variables yet (line 10).
Then, neighbors of the new center are allowed to be selected (line 11). As before,
when a variable is selected, Xunassigned , Xconflicted and Xallowed are updated
(lines 12-14).

The degree of freedom of the first center xc1 is equal to : max(k−1, conflictDeg
(xc1)). Degrees of freedom of other variables are still between 1 and their degree.

4.4 ConflictVarAndSat-Star

In this section, we show the relevance of selecting some non-conflicted variables.
Let A be a complete assignment with (x1 = a) and (x2 = a), and suppose, for
the problem in Figure 1, that the constraint c in dashed related to x1 (in black)
and to x2 is a hard equality constraint. We remind that constraints in dashed
lines are satisfied by A. A heuristic, only based on conflicts, would select x1, but
not x2, since it is not a conflicted variable. In this case, during the rebuilding
step, x1 will never be reassigned to another value (since c is a hard constraint).
So, we propose to extend ConflictVarStar to ConflictVarAndSat-Starwhich
also selects non-conflicted variables.

As before, first, ConflictAndSatVarStar randomly selects a center variable
xc among Xunassigned, then allows conflicted variables among neighbors(xc) to
be chosen. If all of these variables are already selected, before choosing a new
center variables, next variables will be selected among non-conflicted ones in
neighbors(xc). Each time, a new center has to be chosen, it is selected among
conflicted variables neighboring to selected ones (if some are not selected yet),
otherwise among non-conflicted variables neighboring to selected ones.

The degree of freedom of the first center is equal to : max(k − 1, deg(xc1)),
with deg(xc1) ≥ conflictDeg(xc1). Degrees of freedom of other variables are still
between 1 and their degree.

4.5 ConflictVar-MaxDeg

We also propose the heuristic ConflictVar-MaxDeg, which tries to maximize
degrees of freedom of all selected variables. Algorithm 6 details its pseudo-code.

The function GetVarsMaxCard randomly selects a (conflicted or non-conflicted)
variable among those having the highest number of neighboring variables already
selected (ties are randomly broken).

First, ConflictVar-MaxDeg selects a variable x among conflicted ones. Then,
for each variable x′ in neighbors(x), card[x′] (i.e. the number of already selected
neighbors of x′) is increased by 1. Next variables will be randomly chosen among
(conflicted or non-conflicted) variables with the highest value of card.

The degree of freedom may still be equal to 1 in the worst case. However,
in practice we have noticed that, degrees of freedom of selected variables are
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Algorithm 6. ConflictVar-MaxDeg
function ConflictVar-MaxDeg (A, X , C, k) begin

Let card be an array of size n1

x ← randomPick(getConflict(A, C))2

Xunassigned ← {x}3

foreach x′ ∈ neighbors(x) do card[x′] ← card[x′] + 145

while #(Xunassigned) �= k do6

x ← GetVarsMaxCard(X\Xunassigned, card)7

Xunassigned ← Xunassigned ∪ {x}8

foreach x′ ∈ neighbors(x) do card[x′] ← card[x′] + 1910

return Xunassigned11

end

higher. Nevertheless, this heuristic less depends on randomness than previous
ones, since it is more guided by a deterministic criterion.

4.6 ConflictVar-H-Cost

In the WCSP framework, it is important to try to satisfy, as often as possible,
constraints with high violation cost. However, some of them may be violated
in all optimal solutions. So, heuristics defined for WCSP should try to satisfy
constraints with a high violation cost (by regularly unassigning its variables),
but without trying to satisfy them all the time.

To achieve this goal, we propose to extend each previous heuristic in order to
make them dependent on violation costs as follows (the extension of a heuristic
H is noted H-Cost). For a current complete assignment A, first, costs of all
constraints are sorted in decreasing order, and divided into nbSets subsets noted
ec1, ec2, ...ecnbSets, with nbSets a parameter to set at the beginning of the search.
Each subset eci contains the (i ∗ e)/nbSets highest violation costs (with e the
number of constraints). During the search, only constraints with a violation
cost higher or equal to min(ecb) will be considered as conflicted; the value of b
proportionally increases according to the value of k. When k is equal to kmin

(resp. kmax), b is equal to 1 (resp. nbSets). So, during the search (if the timeout
is not reached), all constraints will be considered as conflicted at least once.
Besides, variables involved in constraints with a high violation cost (for the
current assignment), will be unassigned more regularly (since k is reset each
time a new solution is found). For example, for 6 constraints and nbSets equal
to 2, violations costs of constraints are sorted {14, 2, 1, 1, 0, 0} and divided into
the two subsets ec1 = {14, 2, 1} and ec2 = {14, 2, 1, 1, 0, 0}.

In this paper, we only detail the extension of ConflictVar (see Algorithm 7).
However, the extension of ConflictVar-Star has also been considered.

In Algorithm 7, the function InitMinEc returns an array, noted minec, con-
taining all min(eci) previously defined. The function getB returns the value
of b according to the current dimension of the neighborhood. The function
getOptConflict returns a subset of variables considered as conflicted (i.e. in-
volved in a constraint with a violation cost higher or equal to minec[b]).
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Algorithm 7. ConflictVar-Cost
function ConflictVar-Cost (A, X , C, k, kinit, kmax, nbSets) begin

Let minec[] be an array (of size nbSets) of integers1

minec ← InitMinEc(A, minec, C, nbSets)2

b ← getB(k, kinit, kmax, nbSets)3

Xunassigned ← ∅4

Xconflicted ← getOptConflict(A, C, minec[b])5

while #(Xunassigned) �= k do6

while Xconflicted = ∅ do7

b ← b + 18

Xconflicted ← getOptConflict(A, C, minec[b])\Xunassigned9

x ← randomPick(Xconflicted)10

Xunassigned ← Xunassigned ∪ {x}11

Xconflicted ← Xconflicted\{x}12

return Xunassigned13

end
function getB (k, kinit, kmax, nbSets) begin

return �1 + (nbSets − 1) ∗ k−kinit
kmax−kinit

�14

end

ConflictVar-Cost randomly selects variables among conflicted ones (line 10).
If all of them are chosen (line 7), the set of constraints considered as conflicted is
enlarged to constraints with lower violation costs according to values in minec
(lines 8-9).

5 Experiments

RLFAPInstances:TheCELAR (French:Centre d’Electronique de l’Armement)
has made available a set of instances for the Radio Link Frequency Assignment
Problem (RLFAP [1]). They consist in assigning a limited number of frequencies to
a set of radio links defined between pairs of sites, in order to minimize interferences
due to the re-use of frequencies. For experiments, we have considered
instances from Scen06 to Scen10. A simplification is performed on each instance
before search in order to satisfy all hard equality constraints; these constraints are,
because of the nature of the domain of their related variables, bijective.

GRAPH instances: Generating Radio link frequency Assignment Problems
Heuristically ([16]) is a random generator of instances similar to CELAR ones.

Each instance has been solved by VNS/LDS+CP, with a discrepancy of 4,
which is the best value found on RLFAP instances (see [9]). kmin, kmax have
been set to 5 and 25, and the timeout to 6 minutes. All search strategies have
been implemented in Java using the library choco [4]. Each curve represents an
average over 100 resolutions of the evolution of the best known solution. Experi-
ments have been performed on a 1.6 GHz P4 processor. For ConflictVar-H-Cost
heuristics, nbSets has been arbitrarily set to 5.
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Figures from 2 to 6 (resp. from 7 to 12) depict results obtained on RLFAP
(resp. GRAPH) instances. Results allow us to make the following observations :

1. for all instances, performances of ConflictVar and ConflictVar-Connected
are very similar. So, even if the minimal value of degree of freedom is increased
by 1, this is not sufficient to identify assignments which need to be rebuilt.

2. Heuristics with a higher degree of freedom, are clearly more relevant. For all in-
stances (except those where results are similar and Scen10), ConflictVar-MaxDeg
outperforms ConflictVar-Star and ConflictVarAndSat-Star, in particular on
Scen06 and Scen07 (which are among the most difficult ones).

3. Selecting non-conflicted variables is an important criterion. Indeed,
ConflictVarAndSat-Star outperforms ConflictVar-Star (except on Scen10).

4. ConflictVar-MaxDeg which combines the two previous criteria (by maximiz-
ing the degree of freedom of selected variables, and choosing also non-conflicted
ones), is a very efficient heuristic. Indeed, on most instances, it is one of the best
ones (except on Scen10).

5. Compared to ConflictVar, ConflictVar-Cost performs better on most in-
stances. Moreover, the combination of ConflictVar-Starwith cost selection (i.e.
ConflictVar-Star-Cost) outperforms ConflictVar-MaxDeg on Scen10 and
presents the same behavior on GRAPH instances. This confirms that it could be
important to consider violation costs of constraints when choosing variables to be
unassigned.

Table 1 shows for each instance, the cost of the best solution found by each
heuristic. Each heuristic is noted by a number, best results are in bold, and best
solutions which are not proved optimal are in italic. ConflictVar-Star-Cost
and ConflictVar-MaxDeg are the best heuristics, with a small advantage to
the first one which has found optimal solutions on 4 GRAPH instances, 2
CELAR instances, and is really very close to the optimum on other instances.
Our results are quite similar to those obtained by ID Walk [12] on CELAR
instances.

Table 1. Best solutions found on each instance

s-06 s-07 s-08 s-09 s-10 g-05 g-06 g-07 g-11 g-12 g-13

Optimum 3389 343592 262 15571 31516 221 4123 4324 3080 11827 10110
ConflictVar 3434 2599275 490 15675 31518 332 12434 4368 25183 11846 38149

CV-Connected 3514 2394230 491 15821 31516 320 10563 4383 22911 11839 37944

CV-MaxDeg 3401 354302 286 15571 31516 221 4123 4324 3350 11827 11599
CV-Star 3528 364410 343 15571 31516 290 4250 4324 5380 11827 15384

CVAndSat-Star 3412 364103 286 15571 31516 221 4126 4324 3473 11827 12335

CV-Cost 3463 586159 468 15571 31516 250 8277 4324 19112 11828 35606

CV-Star-Cost 3399 343800 296 15571 31516 221 4123 4324 3235 11827 12794
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Fig. 2. Scen06 (n=100,e=1222)
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Fig. 4. Scen08 (n=458,e=5286)
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Fig. 5. Scen09 (n=200,e=4209)
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Fig. 6. Scen10 (n=200,e=4209)
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Fig. 7. Graph05 (n=100,e=1034)
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Fig. 8. Graph06 (n=200,e=1970)
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Fig. 9. Graph07 (n=141,e=2213)
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Fig. 10. Graph11 (n=340,e=3417)
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Fig. 11. Graph12 (n=252,e=4099)
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Fig. 12. Graph13 (n=458,e=4815)

6 Conclusion

In this article, we have proposed new neighborhood heuristics dedicated to
solve optimization problems modelled as WCSP based on conflict variables,
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graph topology and violation cost of constraints. Experiments performed with
VNS/LDS+CP show that our heuristics clearly outperform ConflictVar.

In future works, we will study the influence of the value of the nbSets param-
eter on the efficiency of our cost-based heuristic. We also plan to compare our
heuristics to PGLNS on RLFAP and random instances.
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Abstract. The Balanced Academic Curriculum Problem (BACP) con-
sists in assigning courses to teaching periods satisfying prerequisites and
balancing students’ load. BACP is included in CSPlib along with three
benchmark instances. However, the BACP formulation in CSPLib is ac-
tually simpler than the real problem that, in general, universities have
to solve in practice.

In this paper, we propose a generalized formulation of the problem and
we study a set of hybrid solution techniques based on high-level control
strategies that drive a collection of basic local search components. The
result of the study allows us to build a complex combination of sim-
ulated annealing, dynamic tabu search and large-neighborhood search.
In addition, we present six new instances obtained from our university,
which are much larger and more challenging than the CSPlib ones (the
latter are always solved to optimality in less than 0.1 seconds by our
techniques).

For the sake of possible future comparisons, we make available through
the web all the input data, our scores and results, and a solution validator.

1 Introduction

The Balanced Academic Curriculum Problem (BACP) is an assignment problem
that arises in universities, and consists in assigning courses to teaching periods
satisfying prerequisites and balancing students’ load.

A formulation of BACP has been proposed by Castro and Manzano [3], and it
has been included in CSPLib [7, prob. 30] along with three benchmark instances.

The BAC problem, in the CSPLib formulation, has been also tackled by Hnich
et al [9] and Castro et al [2], using CP and IP techniques, and by Lambert et al
[11], using a hybrid techniques composed by genetic algorithms and constraint
propagation. In all works, the authors report the finding of a proven-optimal
solution for all three instances, although with quite different running times that
range from less than one second to hundreds of seconds.

The BACP formulation is actually simpler than the real problem that uni-
versities have to solve in practice, at least for the cases we are aware of. In this
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paper, we try to overcome this limitation, and we define a more complex formu-
lation, which applies, among others, to our institution (School of Engineering of
University of Udine).

We study the application of general high-level local search strategies and we
develop a hybrid solution technique based on a complex combination of simulated
annealing, dynamic tabu search and large-neighborhood search. We propose six
new instances obtained from our university. Our instances are much larger and
(for our techniques) more challenging than the CSPLib ones, and their opti-
mal value is not known. Furthermore, they show different structures, as they
represent cases very different from each other.

We report our experimental analysis for these new instances. In addition, given
that the formulation proposed here is actually a generalization of the BACP one,
we have been able to test our solver also on the CSPLib instances. The outcome
has been that all three CSPLib instances are solved to optimality in less than
0.1 seconds in almost all runs of our solvers. This proves that, on those simpler
cases, the solvers’ performances are comparable or better than state of the art
solutions.

For the general problem and for the larger instances, obviously we have no
“competitors” to compare to, besides the variants implemented by ourselves.
Nevertheless, for the sake of possible future comparisons, we make available
through the web (http://www.diegm.uniud.it/satt/projects/bacp/) all the
input data, our results, and also the source code of the solution validator.

The validator is a simple program that takes two command-line parameters,
an instance and a solution, and returns both a detailed list of the violations and
a summary of the costs. As we discussed in detail in [13], we believe that the
publication of the validator is indeed necessary when proposing a new problem,
so as to prevent possible misunderstandings on the details of the formulation,
and thus to provide against the publication of incorrect results.

2 Problem Formulations

We first present here the basic BACP formulation as proposed in [3]. Later
we discuss the extensions that we have added for dealing with our real-world
problem.

2.1 BACP Formulation

The basic formulation consists of the following entities and constraints:

Courses: Each course has an integer number of credits, and it has to be taught
during the planning horizon of the university degree.

Periods: The planning horizon is composed by a given number of teaching
periods that have to be assigned to courses. Periods are divided in years,
and each year is divided in a fixed number of terms. For example, a 3-year
degree organized in four trimesters per year has 12 periods.

http://www.diegm.uniud.it/satt/projects/bacp/
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Load limits: For each period there is a minimum and a maximum number of
courses that can be assigned to it. Further, there are minimum and maximum
limits also on the number of total credits per period.

Prerequisites: Based on their content, some courses have to be taught before
other courses. This means that we are given a set of pairs of courses, such
that the period assigned to the first course has to be strictly less than the
period assigned to the second. Obviously, prerequisite relation is transitive
and cannot contain cycles.

The problem consists in finding an assignment of courses to periods that
satisfies all above (hard) constraints: load limits and prerequisites. The objective
function accounts for the balancing of credits in periods. In detail, the objective
function (to be minimized) used in the cited papers is: the maximum number of
total credits per period.

For example, the CSPLib instance bacp8 has 46 courses for a total of 133
credits and 8 periods. The average number of credits per period is 133/8 =
16.625. Therefore, the lower bound of the maximum number of credits per period
is 17. Solutions with value 17 are thus optimal.

2.2 GBACP Formulation

Given the above basic formulation as starting point, we extend it in the following
directions.

Curricula: First of all, in the formulation it is implicitly assumed that a student
takes all courses without personal choices, whereas in practice a student can
select among alternatives. A curriculum is a set of courses representing a
possible complete selection of a student. For each single curriculum, courses
have to be balanced and limited in number. We extend the problem by
considering many curricula, which may share some of the courses.

Preferences: Professors can express preferences about their teaching periods.
Specifically, a teacher expresses his/her preferences for a specific term of the
year but not for the year. A preference of a course for a given term results
in a penalty for any assignment of the course to a period which is not in
that term. Preferences are not strict, and therefore they contribute to the
objective function (soft constraints).

The objective function is thus a composition of preference violations and un-
balanced load. In order to adhere more precisely to the real situation, the load
component that we consider is not based only on the maximum load, but it sums
up all the deviations (positive and negative) from the average number of credits
per period for each curriculum.

More precisely, for each curriculum we compute α as the total number of
credits of a curriculum divided by the number of periods (not necessarily integer-
valued). A number of credits per period equal to 	α
 or �α� has penalty 0. All
values below 	α
 or above �α� are penalized. In order to avoid large discrepancies
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from α, the penalty is quadratic. That is, a deviation of 1, 2, or 3 counts as 1,
4, and 9 points of penalty respectively (and so on for larger values).

Load limits are evaluated for each single curriculum and summed up. Con-
versely, prerequisites remain expressed at the global level. In order to have a
single objective function, we assign to each violation of a preference 5 points of
penalty.

As mentioned above, the original formulation includes limits per period in
terms of both number of courses and total credits. However, the quadratic
penalty of credit balancing makes the presence of hard limits in the number
of credits meaningless in our formulation, because large discrepancies are al-
ready prevented. Therefore, we remove this constraint. Conversely, the limits
on the number of courses instead are maintained because they helps in avoid-
ing extreme situations in terms of the number of final exams (independently of
credits), which is desirable in our institution.

We call the corresponding problem GBACP (G for Generalized). Notice that
a 0 cost solution in our GBACP formulation, costs �α� in the original BACP
and it is thus optimal.

The opposite is not necessarily true. For example, for the CSPLib instance
bacp8, which has (for its single curriculum) α = 16.625, a solution with 15, 16
and 17 credits per period has optimal value (17) for the basic formulation, but
the periods with 15 credits are penalized 1 in our formulation.

3 Local Search for GBACP

Local search is a family of general-purpose techniques for search and optimization
problems, which are based on an iterative process of navigating a search space
stepping from one solution to a neighboring one. The process is guided by a cost
function, which drives the search toward good solutions.

In order to apply local search to GBACP we have to define several features.
We first illustrate the search space and the procedure for computing the initial
state. Then, we define the neighborhood structure, and finally we describe the
set of search components employed and the high-level strategies for combining
them.

3.1 Search Space, Initial Solution, and Neighborhood Relation

Based on prerequisites, we can infer some infeasible assignment by constraint
propagation. For example, if course a must be before course b, then course a
cannot be assigned to the last period, and course b cannot assigned to the first.

We therefore compute the transitive closure of the prerequisites, and based on
it we determine a minimum and a maximum starting period for each course as
its assignable range. The search space is then defined by all possible assignments
of a period in the above range to each course.

Assignments that violates hard constraints (load limits and prerequisites) are
also considered, and the violations (distance to feasibility) are included in the
cost function of the search with a higher weight w.r.t. the objective function.
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Fig. 1. An example of Generalized Local Search Machine with three search components

The initial solution is generated in a totally random way: each course is as-
signed a uniform random period in its assignable range.

The neighborhood relation consists in moving one course from its period to
another one (in its range). A move is therefore identified by two attributes,
namely the course and the new period.

3.2 Search Techniques

In this work we study a set of high-level search control strategies that hybridize
several basic local search components. This idea is an instantiation of Hoos and
Stützle’s Generalized Local Search Machines (GLSM) [10, Chapter 3], which is a
formal framework for describing search control by clearly separating it from the
search components. In this framework, the basic search components are repre-
sented as states (i.e., nodes) of a Finite State Machine, whereas the transitions
(i.e., edges) correspond to conditions for modeling the search control. Within
the GLSM framework it is possible to specify also complex strategies such as
VNS [8] and ILS [12].

In our terminology we refer to the states of the machine as runners, that are
basic local search metaheuristics, or kickers, that are perturbation components
represented by a single move in a large neighborhood used either for intensifica-
tion or diversification purposes.

In Figure 1 we show an example of a GLSM with three search components.
The search starts from C1 and when this component has finished it uncondition-
ally passes its solution to component C2. Component C2 continues the search,
followed by C3 and afterward C4. Then the process is started again from C2.
The whole strategy is stopped when an overall timeout τ has expired.

3.3 Search Components for GBACP

The search components employed in this study range from very trivial strate-
gies to more complex meta-heuristics. In detail, we consider the following ones
(see [10] for a detailed description):
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Steepest Descent (SD): at each step of the search the whole neighborhood is
explored and the best improving move is performed. The search is stopped
when a local minimum is reached.

First Descent (FD): differently from SD, this technique interrupts the explo-
ration the neighborhood as soon as the first improving neighbor has been
found. Like SD, The search is stopped when a local minimum is reached.

Randomized Hill Climbing (RHC): at each step of the search a random
neighbor is selected. The move is performed only if the cost of the neighbor
is less or equal than the current solution cost.

Simulated Annealing (SA): similarly to RHC a random neighbor is selected
at each step. The move is performed either if it is an improving one or
according to an exponential time-decreasing probability. In detail, if the cost
of the move is ∆f > 0, the move is accepted with probability e−∆f/T , where
T is a time-decreasing parameter called temperature. At each temperature
level a number σN of neighbors of the current solution is sampled and the new
solution is accepted according the above mentioned probability distribution.
Afterward the value of T is modified using a geometric schedule, i.e., T ′ =
β · T , in which the parameter β < 1 is called the cooling rate.

Tabu Search (TS): at each step a subset of the neighborhood is explored and
the neighbor that gives the minimum cost value becomes the new solu-
tion independently of the fact that its cost value is better or worse than
the current one. The subset is induced by the tabu list, i.e., a list of the
moves recently performed, which are currently forbidden and thus excluded
from the exploration. Our tabu search implementation employs a dynamic
short-term tabu list (called Robust Tabu Search in [10]), so that a move
is kept in the tabu list for a random number of iterations in the range
[kmin..kmax].

Dynamic Tabu Search (DTS): the search strategy is the same as TS, how-
ever this variant of the algorithm is equipped with a mechanism that adap-
tively changes the shape of the cost function. In detail, the constraints which
are satisfied for a given number of iterations will be relaxed (the weight is
reduced by a factor γ > 1, i.e., w′ = w/γ) in order to allow the exploration of
solutions where those constraints do not hold. Conversely, if some constraint
is not satisfied, it is tighten (w′ = w · γ) with the aim of driving the search
toward its satisfaction.

Kickers (K): as explained in [6], kickers are special-purpose components that
perform just one single step in a composite neighborhood (i.e., a sequence
of moves of arbitrary length). Kickers support three strategies for selecting
the moves: (i) random kick (Kr), that is a sequence of random moves, (ii)
first kick (Kf ), the first improving sequence in the exploration of the com-
posite neighborhood, (iii) best kick (Kb), the best sequence in the exhaus-
tive exploration of the composite neighborhood. Random kicks can be used
for diversification purposes (thus giving raise to the Iterated Local Search
strategy [12]), while first and best kicks are employed for intensifying the
search.
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3.4 GLSM Templates

The search components studied in this work are combined by means of the GLSM
templates shown in Figure 2. These machines represent a set of fundamental
strategies for the cooperation of search components.

The multi-start search (Fig. 2a) consists in the repetition of the generation of
a starting solution, e.g., through a random assignment Gr, followed by the run
of a basic meta-heuristic. The multi-run strategy (Fig. 2b), instead, repeats only
the run of the meta-heuristic from the best solution found that far. These two
strategies are simple strategies whose rationale is respectively to enhance diver-
sification and intensification of a single runner at a coarse grain of granularity.
The strategies are denoted in the following by MS(R) and MR(R), respectively.

The other two strategies, instead, include intensification/diversification dur-
ing the high-level search process, according to the types of search components
employed. The token-ring strategy (Fig. 2c) executes in sequence a set of basic
meta-heuristic R1, R2, . . ., followed by another search component that can either
be a kicker, giving raise to what we call run and kick strategy (which is similar
to Iterated Local Search [12]), or another runner (see [6] for more details). At
the end of the process, the sequence is started again from R1. The last tem-
plate (Fig. 2d) is similar to the previous one, the only difference is that more
emphasis is put on intensification, since the last component is a kicker that it
can be iterated while it keeps improving the solution, thus performing a Large
Neighborhood Search (LNS) [1]. Even though the difference between these two
templates might seem minimal, both deserve a study since the computational
cost related to the LNS might favor the simpler run and kick strategy when the
running time granted to the solver is limited. We denote with the symbol � the
token-ring sequence and with a superscript plus (+) sign the LNS.

4 Experimental Analysis

In this section, we first introduce the benchmark instance and the general settings
of our analysis, and then we move to the experimental results.

4.1 Benchmark Instances

In order to accommodate the additional information that we need, we have
to modify the input file format of BACP. Rather than extending it, we have
decide to define a completely new format for GBACP, along the lines of the ctt
format defined in [4] for the timetabling problem defined for the International
Timetabling Competition (ITC-2007) track 3. This new format, explained in the
website, is in our opinion more easily parsable using any programming language
than the one used in CSPLib.

Six new instances, called UD1–UD6, have been extracted from the database of
our university. Actually, given that the database contains historical data, many
more could be created, but they would have been quite similar to these ones,
therefore we decided to keep only the structurally different ones. We have also
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Fig. 2. The GLSM templates studied

Table 1. Features of the instances

Instance Courses Periods (Years × Terms) Curricula Prerequisites Preferences

bcap8 46 8 (4 × 2) 1 33 0
bacp10 42 10 (5 × 2) 1 33 0
bacp12 66 12 (6 × 2) 1 65 0

UD1 307 9 (3 × 3) 37 1383 90
UD2 268 6 (2 × 3) 20 174 79
UD3 236 9 (3 × 3) 31 1092 66
UD4 139 6 (2 × 3) 16 188 40
UD5 282 6 (3 × 2) 31 397 54
UD6 264 4 (2 × 2) 20 70 55

translated the three CSPLib instances into our GBACP format, summing up to
9 cases to experiment on.

Table 1 summarizes the main features of the instances. All instances are avail-
able from the web, along with the format description, our best solutions, and
the C++ source code of the validator that certifies their scores.

The format of the solution file is simply the sequence of the periods assigned
to the courses listed in the same order of the input file.

4.2 General Settings and Implementation

All the algorithms have been implemented in the C++ language, exploiting
the EasyLocal++ framework [5]. EasyLocal++ is a tool for local search
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that provides the full control structures of the algorithms, which, in its current
version, also supports a limited implementation of GLSM.

The experiments were performed on an Intel QuadCore PC (64 bit) running
Debian Linux 4.0, the software is compiled using the GNU C++ compiler (v.
4.1.2).

In order to compare different techniques in a fair way, we decided to grant to
all of them the same total time. That is, the only condition to exit the GLSM is
the timeout expired. The timeout is set to 60 seconds of CPU time on the above
described PC.

The parameters of the basic components have been tuned according to the
results of preliminary experiments on the single search components. The values
are reported in Table 2, where c denotes the number of courses in the input
instance and N(s0) is the neighborhood of solution s0.

Table 2. Parameter settings of the algorithms

Algorithm Parameter Value

Dynamic Tabu Search
kmin c/4
kmax c/4 + 15
γ 1.06

Simulated Annealing

Tstart maxs∈N(s0) ∆f
β 0.99
σN 2000

4.3 Experimental Results

We first report the results of our basic strategies on the CSPLib instances. For
these “easy” instances we report only the outcome of single runs. In detail,
Table 3 reports (for 1000 runs) the percentage of times an optimal (0 cost)
solution has been reached and the average running time (in seconds) of all runs.
The running times reported are the total one, i.e., including reading/writing files
and preprocessing.

The table shows that non-trivial techniques (SA, TS, and, DTS) solve all three
instances to optimality very quickly on almost all runs, whereas the others also
solve them quickly but with much less success rate. A more detailed analysis of
the differences of the techniques is performed on the more challenging instances.

Table 3. Results for CSPLib instances: values are success rate and average number of
seconds to reach a feasible solution

SD FD RHC SA TS DTS
Instance %succ time %succ time %succ time %succ time %succ time %succ time

bacp8 28.3 .0006 19.6 .0008 49.5 .1450 100.0 .0042 100.0 .0023 100.0 .0026
bacp10 6.2 .0009 2.2 .0012 33.3 .1906 100.0 .0429 100.0 .0046 100.0 .0060
bacp12 1.3 .0033 0.2 .0040 9.0 .2775 97.9 .1764 98.9 .0459 96.7 .08426
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Regarding previous work, the best results in the literature are those in [9]
which report a running time of 0.29, 0.59, and 1.09 secs to find to optimal
solution for bacp8, bacp10, and bacp12, respectively. Our running times are
somewhat better, however the absolute values are both small, and we cannot
reach any conclusion on the comparison. But at least, these results confirm that
local search techniques are indeed suitable to solve the BACP problem.

Moving to the analysis of the GLSM strategies described in Section 3.4, we
perform a two step analysis. First we run the simple strategies equipped with
all the search components to identify the most promising ones. Then we try to
improve the performances of the selected search components by equipping the
complex strategies with them.

Notice that not all combinations of simple search strategies and search com-
ponents are meaningful. For example the multi run applied to the SD and FD
algorithm is completely useless, since this algorithms stop as soon they got stuck
in a local minimum.

The results are shown in Figure 3. In the plots it has been reported the
normalized cost found by each algorithm on all the instances UD1–UD6, the
data refers to 80 repetitions of each algorithm with different random seeds. The
results of the runs are normalized with respect to the value of the best known cost
of each instance, i.e., fnorm = f/fbest,i. Moreover we employ a semi-logarithmic
scale on the y-axis, to enhance the differences between the different methods.

From the picture in Figure 3a we can see that, in general, the multi start
strategy performs slightly better than the multi run ones. This can be explained
by a early stagnation of the search, which prompts for a strong diversification of
the search. Regardless of the search strategy employed, the best results for the
simple strategies are obtained by the SA and DTS search components.

In the second step of the analysis we equip the complex strategies with the best
algorithms found in the previous step, i.e., the SA and DTS search components.
We test those algorithms followed by a kicker of length 2.

...................................... ........
........
........
........
......

.................................................................................

.....

.......................................................

........

...

........

...

........

...

........

...

...........

...........

...

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

...............................................................
........
........
........
........
........
........
........
........
............................................................................................................................................... ...................................... ........

........

........

........

......

........

....................................................................................

................

.......................................................

........

...

........

...

........

...

........

...

....

...........

...........

...........

...........

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

...............................................................
........
........
........
........
........
........
........
........
........
........
.....................................................................................................................................................

.................................................

.

........................

.

........................

.

........................

.........................

.........................

.........................

.

........................

.

........................

.........................

.........................

..........................

........................

.........................

.........................

.........................

.........................

.

........................

.........................

.

........................

.

.................................................

.

.........................

...................................... ........
........
........
........
......

........

........

........

.................................................................................

.............................

.......................................................

........

...

........

...

........

...

........

...

........

...

........

.

...........

...........

...........

...........

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

...............................................................
........
........
........
........
........
........
........
........
........
........
........
.......................................................................................................................................................................

........................

.

........................

.

........................

.........................

.........................

.

.................................................

.........................

.

........................

.

........................

..........................

.........................

........................

.........................

.

........................

.

.................................................

.........................

.........................

.........................

.

........................

.

.........................

..........................................................................

.........................

.

........................

.........................

..................................................

.........................

.........................

..........................

........................

.

..........................................................................

.

........................

.

........................

..........................

........................

.

........................

.

.........................

........................

.........................

..........................

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.........................

.

........................

..................................................

.

...................................... ........
........
........
........
......
...................................................................................................................................

........

...

........

...

........

...

...........

...........

...........

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

...............................................................
........
........
........
........
........
...................................................................................................................

........................

.........................

.

.........................

........................

.........................

.........................

..................................................

..................................................

.........................

.........................

.........................

..................................................

.........................

.

........................

.........................

.........................

.........................

.

........................

.

........................

.

........................

.

........................

.

........................

.........................

.........................

.........................

.........................

.

...................................... ........
........
........
........
......

........

...................................................................................

...............

.......................................................

........

...

........

...

........

...

......

...........

...........

...........

...........

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

...............................................................
........
........
........
........
........
........
........
........
........
........
...................................................................................................................................................

........................

.

........................

.........................

.........................

.........................

.

........................

.

...................................... ........
........
........
........
......
............................................................................

.......................................................

........

...

........

...

........

...

...........

...........

..........

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

...............................................................
........
........
........
........
........
.............................................................................................................

........................

.........................

.........................

.

........................

.

.........................

........................

.

.........................

........................

.

........................

.........................

.

......................... ...................................... ........
........
........
........
......

........

........

........

........

......

........

........

........

...............................................................................

......................................

...........................

.......................................................

........

...

........

...

........

...

........

...

........

...

........

...

........

...

........

...

........

...

...........

...........

...........

...........

...........

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

...............................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.........................................................................................................................................................................................................................................

........................

.........................

.........................

.

.........................

.................................................

.

........................

.........................

.

........................

.........................

.

........................

.........................

.

........................

.

.........................

........................

.

.........................

.................................................

.........................

.

.........................

.................................................

.

...................................... ........
........
........
........
......
...................................................................................................................................

........

...

........

...

........

.

...........

...........

...........

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

...............................................................
........
........
........
........
........
...................................................................................................................

.........................

........................

.........................

.........................

.........................

..........................

........................

.........................

.........................

.........................

.........................

.

........................

.

........................

..........................

........................

.

........................

.........................

.........................

.........................

.

........................

.........................

.........................

.........................

..........................

........................

.........................

.........................

..................................................

.

...................................... ........
........
........
........
......

........

........

........

........

......

........

........

........

........

..................................................................................

......................................

......................................

.......................................................

........

...

........

...

........

...

........

...

........

..

...........

...........

...........

...........

...........

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

...............................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.........................................................................................................................................................................................................................................................

........................

.

........................

.

........................

.

........................

.........................

..........................

........................

.........................

.

.........................

........................

..........................

........................

.

........................

.

........................

.

.........................

........................

.

.........................

.........................

........................

.

.........................

........................

.

........................

.

.........................

........................

.........................

.

........................

.........................

.

.........................

...................................... ........
........
........
........
......

........

...............................................................................

...........

.......................................................

........

...

........

...

........

...

...........

...........

...........

..........

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

...............................................................
........
........
........
........
........
........
........
........
........
...................................................................................................................................................

.........................

.........................

........................

.

.................................................

.

.........................

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.........................

.

........................

.

........................

.

........................

.

.........................

........................

.

........................

.

.........................

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

.........................

........................

.

........................

.

........................

.........................

.

.........................

........................

.

........................

.

........................

.

........................

.

.........................

........................

.

........................

.

........................

.

........................

.........................

..........................

........................

.

........................

.

........................

.

........................

.

.........................

........................

.

........................

.

........................

.

........................

.

........................

.

.........................

.........................

........................

.

........................

.

.........................

........................

.

........................

.........................

.


...........

...........
...........

...........
...........

...........
...........

...........
...........

M
S(

SD
)

M
S(

FD
)

M
S(

R
H

C
)

M
S(

SA
)

M
S(

T
S)

M
S(

D
T

S)

M
R
(R

H
C
)

M
R
(S

A
)

M
R
(T

S)

M
R
(D

T
S)

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...........

...........

...........

...........

...........

...........

1

2

5

10

20

50

N
or

m
al

iz
ed

co
st


........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........


.............................................
........
........
........
......

........

........

........

........

......

...........................................................................

...........................................................................

........

...

........

...

........

...

........

...

........

...

........

...

........

...

...........

...........

...........

...........

...........

...........

...........

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

.............................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...................................................................................................................................................................................

........................

.

........................

.

........................

.........................

.........................

.

.........................

........................

.

........................

.........................

.........................

.........................

.

........................

.

........................

.........................

.........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.........................

.

........................

.

........................

.........................

.

.............................................
........
........
........
......

........

........

........

........

......

...........................................................................

......................................

.....................................

........

...

........

...

........

...

........

...

........

...

........

...

........

...

...

...........

...........

...........

...........

...........

...........

.........

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

.............................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.............................................................................................................................................................................

........................

.........................

.

........................

.

........................

.

........................

.

.........................

.........................

.........................

........................

.........................

.

........................

.

.............................................
........
........
........
......

........

........

........

........

......

........

........

........

........

.................................................................................

......................................

......................................

.....................................

........

...

........

...

........

...

........

...

........

...

........

...

...........

...........

...........

...........

...........

...........

...........

...........

......

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

.............................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.........................................................................................................................................................................................................................................

.........................

.........................

.............................................
........
........
........
......

........

........

........

........

......

...........................................................................

......................................

.....................................

........

...

........

...

........

...

........

...

........

...

...

...........

...........

...........

...........

...........

...........

.....

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

.............................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...................................................................................................................................................................

........................

.

........................

.

........................

.........................

.

........................

.

........................

.

........................

.

.................................................

..........................

........................

.

........................

.

........................

.

........................

.

.........................

........................

.

.........................

.........................

........................

.

........................

.

.........................

........................

.........................

.

.........................

........................

.

.............................................
........
........
........
......

........

........

........

........

......

........

........

........

........

......

...........................................................................

......................................

......................................

.....................................

........

...

........

...

........

...

........

...

........

...

........

.

...........

...........

...........

...........

...........

...........

...........

...........

...........

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

.............................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...........................................................................................................................................................................................................................................................

..............................................................................................................................................................................

.........................

.

........................

.........................

.

.............................................
........
........
........
......

........

........

........

........

......

...........................................................................

......................................

.....................................

........

...

........

...

........

...

...........

...........

...........

...........

...........

...........

......

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

.............................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.....................................................................................................................................................................

........................

.

..................................................

.........................

........................

.

.........................

.............................................
........
........
........
......

........

........

........

..................................................................................

...............................

.....................................

........

...

........

...

........

...

...........

...........

...........

...........

...........

.......

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

.............................................
........
........
........
........
........
........
........
........
........
........
........
........
.................................................................................................................................................

........................

.

........................

.

.........................

........................

.

........................

.

.........................

.................................................

.........................

.........................

.

........................

.........................

.

.............................................
........
........
........
......

........

........

........

........

......

........

........

........

........

......

...........................................................................

......................................

......................................

.....................................

........

...

........

...

........

...

........

...

........

...

........

.

...........

...........

...........

...........

...........

...........

...........

...........

...........

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

.............................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.............................................................................................................................................................................................................................................................

........................

.

...................................................................................................

.

..................................................

........................

.........................

.

.........................

.............................................
........
........
........
......

........

........

........

........

......

...........................................................................

...........................................................................

........

...

........

...

........

...

........

...

........

...

........

...

......

...........

...........

...........

...........

...........

...........

...........

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

.............................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.................................................................................................................................................................................

........................

.

........................

.

........................

.

........................

.........................

.

........................

..........................

........................

.

........................

.

.............................................
........
........
........
......

........

............................................................................

.........

.....................................

........

...

........

...

........

...

........

...

........

...

........

.

...........

...........

...........

...........

...........

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

.............................................
........
........
........
........
........
........
........
........
........
.............................................................................................................................

........................

.

........................

.

.........................

........................

.

........................

.

.........................

........................

.

........................

.

.........................

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

.........................

........................

.

.........................

........................

.

........................

.

........................

.

.............................................
........
........
........
......

...........................................................................
.....................................

........

...

........

...

........

...

...........

...........

...........

...........

....

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

.............................................
........
........
........
........
........
........
........
...................................................................................................................

........................

.

........................

.

........................

.

........................

.

........................

.........................

.

........................

.

........................

.

........................

.........................

.

.........................

........................

.

........................

.........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

.........................

........................

.........................

.

.........................

........................

.

........................

.

........................

.

........................

.

........................

.

.........................

........................

.

.........................

........................

.

........................

.

........................

.

.............................................
........
........
........
......

...........................................................................
.....................................

........

...

........

...

........

..

...........

...........

...........

...........

.....

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

.............................................
........
........
........
........
........
........
........
........
.................................................................................................................

........................

.

........................

.

........................

.

........................

.

........................

.

.........................

........................

.

........................

.........................

.

........................

.

........................

.

..................................................

........................

.

........................

.

........................

.

........................

.

........................

.

.........................

.........................

.........................

.........................

........................

.

........................

.

.........................

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.........................

.

........................

.

........................

.

.............................................
........
........
........
......

........

........

........

........

.................................................................................

......................................

.....................................

........

...

........

...

........

...

......

...........

...........

...........

...........

...........

...........

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

.............................................
........
........
........
........
........
........
........
........
........
........
........
........
........
.........................................................................................................................................................

..................................................

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

........................

..........................

........................

.........................

.........................

.

........................

.........................

.

........................

.........................

.........................

.

........................

.........................

.........................

.

........................

.

........................

.

........................

.

........................

.

.........................

........................

.

.............................................
........
........
........
......

........

........

........

........

..............................................................................

...................................

.....................................

........

...

........

...

........

...

........

...........

...........

...........

...........

...........

...........

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

.............................................
........
........
........
........
........
........
........
........
........
........
........
........
.........................................................................................................................................................

........................

.

........................

.

.........................

.........................

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.........................

.

........................

.

.........................

........................

.........................

.

........................

.........................

.

........................

.

........................

.

.........................

.........................

........................

.

........................

.

.............................................
........
........
........
......

...................................................................................

........

.....................................

........

...

........

...

........

...........

...........

...........

...........

...........

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

.............................................
........
........
........
........
........
........
........
........
........
...........................................................................................................................

.........................

........................

.

........................

.

.........................

........................

.

........................

.

........................

.

........................

.

........................

.

........................

.

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........

M
S(

SA
)

M
S(

D
T

S)

SA
�
K

f

SA
�
K

b

SA
�
K

r

D
T

S�
K

f

D
T

S�
K

b

D
T

S�
K

r

SA
�
D

T
S

SA
�
D

T
S�

K
b

SA
¿(

K
f
)+

SA
�
(K

b
)+

D
T

S�
(K

f
)+

D
T

S�
(K

b
)+

SA
�
D

T
S�

(K
b
)+

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

...........

...........

...........

...........

...........

1

2

3

4

5

N
or

m
al

iz
ed

co
st


........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........


(a) Simple strategies (b) Complex strategies

Fig. 3. Results of simple and complex strategies on instances UD1–UD6
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Concerning the results for the complex strategies it is worth to notice that, in
general, their results are not worse than those achieved by the simple ones (the
two leftmost boxes in Fig. 3b). However, it seems that the complex strategies
fits better with an intensification mechanism, e.g., DTS with both strategies or
SA with the token ring followed by LNS. Moreover, the combination that gives
the best performances is SA�DTS�(Kb)+, which combines intensification and
diversification steps in a quite complex way.

5 Conclusions and Future Work

This paper reports on an ongoing work for the solution of the GBAC problem
by means of hybrid local search techniques. The preliminary results show that,
although local search techniques are in general effective to solve this kind of
problems, there is need to devise complex combinations of techniques to obtain
better results.

In the future we plan to explore more systematically the possible GLSM combi-
nations, in order to obtain a clearer picture of the importance of the hybridization.

Regarding the problem formulation, the GBACP proposed here seems to be
adequate to solve our practical problem. Nevertheless, it still contains some
limitations, that we plan to further investigate in future work. In detail, there
are two main issues to address:

– Although not advisable, it is possible that a course is taken in different
years in different curricula. This possibility would require a more complicated
model in which courses are assigned to terms only, and for each actual pair
course/curriculum we assign a different year.

– Different curricula in some cases represent free alternatives of the same de-
gree, nevertheless some extra lower level alternatives are not modeled in the
formulation. In fact, some of the curricula contain actually more courses
than needed by the student to graduate, and they can drop a few of them
among a larger list.

Notice that the second one could be removed simply including all alternatives
in the model by splitting the current curricula. This solution however would
create an explosion in the number of curricula. For example, if a student can drop
4 out of 12 courses in a curriculum, this creates

(
12
8

)
= 495 different curricula

starting from one. Therefore, we need to devise some techniques to manage a
large number of similar curricula.
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LNCS, vol. 3867, pp. 40–49. Springer, Heidelberg (2007)

http://www.cs.qub.ac.uk/itc2007/
http://csplib.cs.strath.ac.uk/


Lagrangian Decomposition, Metaheuristics,

and Hybrid Approaches for the Design of
the Last Mile in Fiber Optic Networks

Markus Leitner1,2 and Günther R. Raidl2

1 Carinthia University of Applied Sciences
School of Telematics / Network Engineering

Klagenfurt, Austria
markus.leitner@fh-kaernten.at
2 Vienna University of Technology

Institute for Computergraphics and Algorithms
Vienna, Austria

raidl@ads.tuwien.ac.at

Abstract. We consider a generalization of the (Price Collecting)
Steiner Tree Problem on a graph with special redundancy requirements
for customer nodes. The problem occurs in the design of the last mile
of real-world communication networks. We formulate it as an abstract
integer linear program and apply Lagrangian Decomposition to obtain
relatively tight lower bounds as well as feasible solutions. Furthermore,
a Variable Neighborhood Search and a GRASP approach are described,
utilizing a new construction heuristic and special neighborhoods. In
particular, hybrids of these methods are also studied and turn out to
often perform superior. By comparison to previously published exact
methods we show that our approaches are applicable to larger problem
instances, while providing high quality solutions together with good
lower bounds.

Keywords: Network Design, Variable Neighborhood Search, Greedy
Randomized Adaptive Search Procedure, Lagrangian Relaxation, Redun-
dancy, Steiner Tree Problem, Survivable Network Design.

1 Introduction

We consider a real-world communication network design problem arising in the
expansion of existing fiber optic networks. “Fiber-to-home” has recently become
economically feasible for individual households. Since the coverage of larger dis-
tricts with such networks requires enormous financial resources, good algorithms
for finding cost-efficient network layouts are crucial.

We consider the problem of augmenting an existing network infrastructure
by additional links (and switches) in order to connect potential customer nodes.
Two types of customers exist: For type-1 customers, a standard, single link
connection suffices, while type-2 customers require more reliable connections,
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ensuring connectivity even when a single link or routing node fails. We also
consider a variant of the problem in which the redundancy condition for type-2
customers is relaxed in the sense that a connection is allowed via a final non-
redundant branch that does not exceed a certain length bmax.

In previous work, summarized in Section 3, we approached this problem with
integer linear programming techniques, including an extended multi-commodity
flow formulation and a branch-and-cut algorithm. These techniques allow to find
proven optimal solutions for relatively small instances.

Here we propose an approach that is also feasible for larger instances and never-
theless provides performance guarantees. It is based on a Lagrangian decomposi-
tion of the network flow model in order to obtain relatively tight lower bounds. The
Lagrangian dual problem is hereby solved via the Volume Algorithm [1], which is
known to often perform better than a standard subgradient search. Upper bounds
and thus primal (feasible) solutions are identified at the same time, and they are
improved by local search utilizing several neighborhoods. Furthermore, we pro-
pose two metaheuristic approaches based on Variable Neighborhood Search [2]
and GRASP [3] to obtain primal solutions in relatively short time.

From a theoretical point-of-view, we are able to show that our Lagrangian
decomposition represents a stronger model than the linear programming relax-
ation of the original multi-commodity network flow model. This observation is
also clearly supported by our experimental results: The Volume Algorithm usu-
ally finds significantly better lower bounds in shorter times, and the obtained
heuristic solutions are typically better or equal than those that could eventually
be obtained by the previous approaches.

In a more general sense, this work is a good example on how Lagrangian
relaxation can be applied in combination with local search based metaheuristics
in order to solve a difficult practical problem heuristically and provide a quality
guarantee, i.e. a lower bound, at the same time. The next section will formally
introduce the problem. In Section 3 we give a short summary on related previous
work. An abstract variant of the multi-commodity flow formulation from [4] is
presented in Section 4 together with the Lagrangian decomposition approach
for solving it. Section 5 presents the neighborhood structures used to improve
solutions in the metaheuristics of Section 6 as well as in the hybrid Lagrangian
approaches given in Section 7. Experimental results are discussed in Section 8,
and Section 9 concludes this work.

2 Problem Definition

We are given a connected undirected graph G = (V, E) representing the spatial
topology of the surrounding area of potential customers. Edges in E correspond
to possible cable routes and have associated lengths le ≥ 0 and construction
costs ce ≥ 0 for installing a corresponding fiber optic link. The node set V is
the disjoint union of customer nodes C and spatial nodes S (switches, possi-
ble Steiner nodes). Set C is partitioned into subsets C1 and C2, whereby cus-
tomers C1 require a single connection (type-1) and customers C2 need to be
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Fig. 1. Problem Instance Fig. 2. Shrunken Instance

Fig. 3. Solution with bmax = 0 Fig. 4. Solution with bmax > 0

root node

C1 client

C2 client

spatial node

infrastructure node

redundantly connected (type-2). Each customer node k ∈ C further has asso-
ciated a prize pk ≥ 0, i.e. expected return of investment. The already existing
network infrastructure is represented by the subgraph I = (VI , EI) of G, see
Figure 1.

In a first preprocessing step, we shrink the whole existing network infras-
tructure, i.e. the root and all connected infrastructure nodes, into a single node
0 ∈ V . From all edges connecting a node i ∈ V to the existing infrastructure,
only the cheapest edge is kept and finally replaced by an edge (0, i) with the
same length and costs, see Figure 2.

Let subgraph G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E represent a solution
network we seek. The following conditions specify how customer nodes are to be
connected:

– Simple connection: A customer node k from C1 is feasibly connected iff there
exists a path from node 0 to k.

– Redundant connection: A customer node k from C2 is feasibly connected iff
there exist two node (and edge) disjoint paths from node 0 to k, see Figure 3.

– bmax-redundant connection: Occasionally, the biconnectivity condition for
the nodes in set C2 is relaxed in the sense that such a node k ∈ C2 may
be connected to any biconnected (Steiner or customer) node j ∈ V (the
branch-node of k) via a single path of maximum total length bmax(k) > 0.
This (optional) single path is called branch-line and bmax(k) the maximum
branch-line length for customer k, see Figure 4.

Regarding the objective, we distinguish between two alternative goals:

– In the Operative Planning Task (OPT) we focus on finding a minimum-cost
subgraph G′ feasibly connecting all customers C, with the total costs being

cOPT(G′) =
∑
e∈E′

ce. (1)
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This case can be considered a generalization of the classical Steiner tree
problem on a graph (STP) where a special form of redundancy is required
for the nodes in C2.

– In the Strategic Simulation Task (SST) customers’ prizes are also considered,
and the objective is to only connect a subset C′ ⊆ C of customers so that
the costs for building the network minus the earned prizes are minimized.
In order to always have positive total costs, which eases some parts of our
algorithms and notations, we perform a simple transformation by adding the
constant

∑
k∈C pk to the objective function, yielding

cSST(G′) =
∑
e∈E′

ce −
∑
k∈C′

pk +
∑
k∈C

pk =
∑
e∈E′

ce +
∑

k∈C\C′

pk. (2)

This problem variant is generalization of the price-collecting Steiner tree
problem (PCSTP).

As already the classical Steiner tree problem on a graph is NP-hard [5], this
obviously also holds for both of our problem variants. In the following presen-
tation of our solution approaches, we primarily consider the more complex SST
case if not explicitly stated and assume pk = ∞, ∀k ∈ C for the OPT case.

3 Previous Work

The Steiner Tree Problem (STP) has been considered by a lot of authors, see
e.g. [6] for a survey. The Price Collecting Steiner Tree Problem (PCSTP) was
introduced by Segev [7] who considered the Node Weighted STP, which is a
special version of the PCSTP. The term “price collecting” has been introduced
by Balas [8] for the Price Collecting Traveling Salesman Problem. A survey on
methods for Survivable Network Design which can be seen as a more general
version of our problem can be found in [9].

In our first attempt described in [4], we modeled this problem as an integer
linear program (ILP) by means of an extended multi-commodity network flow
(MCF) formulation. With the general purpose ILP-solver CPLEX [10], instances
with up to 190 total nodes, 377 edges but only 6 customer nodes could be solved
to proven optimality, and instances up to 2804 nodes, 3082 edges and 12 customer
nodes could be solved with a final gap of about 7%. Unfortunately, this approach
turned out to be unsuitable for larger instances and/or in particular instances
with larger number of customer nodes, as already solving the linear programming
(LP) relaxation of the ILP requires too much time due to the huge number of
variables involved.

In [11], we approached this problem with a different formulation based on
directed connectivity constraints. While this formulation involves only a reason-
able number of variables, the number of inequalities is exponentially large. By
using a branch-and-cut algorithm, however, this model could be solved relatively
well, and we were able to find proven optimal solutions for instances with up
to 190 nodes, 377 edges, and 13 customer nodes. For larger, practical instances
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this approach unfortunately still is not applicable at all or finds quite poor so-
lutions with huge LP-gaps only. Finally, another even stronger model based on
directed connectivity constraints which does not consider bmax redundancy has
been presented in [12].

4 Abstract ILP Model and Lagrangian Decomposition

To formulate this problem as an abstract ILP, we utilize decision variables xe ∈
{0, 1}, ∀e ∈ E, indicating whether or not edge e is part of the solution, i.e.
xe = 1 ↔ e ∈ E′. For customer nodes k ∈ C variables yk ∈ {0, 1} denote whether
or not feasible connections according to the customers’ types and bmax(k) exist.
Our model is based on the MCF formulation from [4], but all the different types
of flow variables for each customer k ∈ C on directed arcs are replaced by simple
variables fk

e ∈ {0, 1}, ∀e ∈ E, indicating whether or not edge e is part of the
single path (type-1) or pair of disjoint paths plus the eventual branch-line (type-
2) for connecting customer k; fk denotes the vector of all these variables for a
customer k.

Let Fk, ∀k ∈ C, be the set of all incidence vectors on E corresponding to
feasible connections for customer k. We can now formulate the SST-variant of
our problem in the following abstract way:

minimize
∑
e∈E

cexe +
∑
k∈C

pk(1 − yk) (3)

s.t. fk
e ≤ xe ∀k ∈ C, ∀e ∈ E (4)

fk ∈ Fk if yk = 1 ∀k ∈ C (5)

fk
e ∈ {0, 1} ∀k ∈ C, ∀e ∈ E (6)

xe ∈ {0, 1} ∀e ∈ E (7)

The objective function (3) uses variables xe and yk but otherwise corresponds
to (2). Inequalities (4) are called coupling constraints and enforce an edge to
appear in the solution when it is used for connecting at least one customer.
Conditions (5) ensure feasible connections for all selected customers (yk = 1).
The OPT-variant of the model is obtained by simply ignoring the second term
in the objective function and the conditions on yk in (5).

Note that in this form, the model is not yet a concrete ILP, as conditions (5)
are not expressed by means of linear inequalities. Ideally, we would substitute
them by a set of linear inequalities describing the convex hull conv(Fk) of all
incidence vectors of feasible connections for each customer k in dependence of
variables yk. Unfortunately, finding a (compact) set of such inequalities is not
trivial. While this can be achieved for simple (type-1) connections via a network
flow formulation, this task is quite difficult for the biconnected case involving
branch-lines (type-2).

Our MCF model from [4] represents a concrete instantiation of this abstract
model. As can be easily shown, however, it does not contain a complete descrip-
tion of conv(Fk) but just a formulation that is valid for integer solutions. We
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conclude that the MCF-formulation from [4] therefore is not as strong as an
“ideal” instantiation of the abstract model.

4.1 Lagrangian Decomposition

For a general introduction to Lagrangian relaxation and decomposition see
e.g. [13]. We relax the coupling constraints (4) of our abstract model in a clas-
sical Lagrangian fashion, i.e., by substituting them with corresponding penalty
terms in the objective function. This yields model LR(λ):

minimize
∑
e∈E

cexe +
∑
k∈C

pk(1 − yk) +
∑
k∈C

∑
e∈E

λk,e · (fk
e − xe) = (8)

=
∑
k∈C

pk +
∑
e∈E

(
ce −

∑
k∈C

λk,e

)
xe +

∑
k∈C

(∑
e∈E

λk,ef
k
e − pkyk

)
(9)

s.t. fk ∈ Fk if yk = 1 ∀k ∈ C (10)

fk
e ∈ {0, 1} ∀k ∈ C, ∀e ∈ E (11)

xe ∈ {0, 1} ∀e ∈ E (12)

Parameters λk,e ≥ 0, ∀k ∈ C, ∀e ∈ E, are the Lagrangian multipliers, and for
any feasible instantiation of them the optimal solution of LR(λ) yields a lower
bound on the optimal solution value of our original abstract model [13]

For a specific selection of λ, this relaxation can be efficiently solved as it
decomposes into |C| independent problems of determining individual cheapest
connections for each k ∈ C on a graph whose edge costs are λk,e (see Section 4.2).
A node k is finally connected (yk = 1) and the variables fk

e corresponding to the
identified connection are set to one iff the connection pays off, i.e.

∑
e∈E λk,ef

k
e ≤

pk. Otherwise, the connection is discarded by setting yk = 0 and fk
e = 0, ∀e ∈ E.

Optimal values for variables xe, e ∈ E, are independently determined by simple
inspection, i.e. xe = 1 iff ce <

∑
k∈C λk,e, ∀e ∈ E.

The Lagrangian dual problem is the challenge of finding an optimal vector of
Lagrange multipliers λ∗ so that the lower bound obtained by LR(λ∗) becomes
as large as possible. As this maximization problem is convex and piecewise lin-
ear, subgradient algorithms are well suited for this purpose [13]. While different
variants of such methods exist, the Volume Algorithm [1] has proven to be more
effective than several alternatives on various occasions [14,15], and we therefore
apply it here. Also, our preliminary comparisons indicate the superiority of this
algorithm over the standard subgradient strategy as described in [13]. Due to
space limitations, we unfortunately cannot describe the Volume Algorithm here.

4.2 Determining an Individual Optimal Connection

In each iteration of the Volume Algorithm, we need to determine for each cus-
tomer k ∈ C the cheapest feasible connection on the graph in which each edge
e ∈ E has costs λk,e ≥ 0. While a simple shortest path calculation from 0 to k
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returns this connection for type-1 customers k ∈ C1, we need to determine the
cheapest pair of node-disjoint paths from 0 to k for type-2 customers k ∈ C2.
Suurballe and Tarjan [16] presented an algorithm to efficiently compute a short-
est arc-disjoint pair of paths between two nodes s and t on a directed graph
GD = (V, A) in time O(|A| + |V | log |V |), see also [17]. Initially a shortest path
tree from s as well as the shortest path P1 from s to t are determined and the
costs of each arc (i, j) are replaced with ci,j −dj +di, with di and dj representing
the costs of the shortest paths from s to i and j, respectively. After reversing all
arcs on P1, a shortest path P2 from s to t is determined on this new (residual)
graph using these adapted arc costs. Finally, the cheapest arc-disjoint pair of
paths is given by P1�P2.

We apply this algorithm on the split graph of the original graph to compute
node-disjoint paths. The split graph is obtained by replacing each node v ∈ V by
a pair of nodes v′, v′′ connected by an arc (v′, v′′) with zero costs. Furthermore,
for each (undirected) edge (u, v) ∈ E arcs (u, v′) and (v′′, u) with the same costs
(and lengths) are created. Since each node v′ has only one outgoing arc and
each node v′′ has only one ingoing arc, any pair of edge-disjoint paths is also
node-disjoint.

A simple extension of the algorithm above for the case of bmax-redundancy
(see Fig. 3) is to determine the overall cheapest combination of a shortest pair
of paths to a node in the bmax-neighborhood of a customer k and a simple path
from this node to k. Although we believe that a more efficient algorithm, at
least with respect to average time complexity, can be found, we currently use
this extension, which increases worst time complexity by a factor proportional to
the size of the bmax neighborhood. Unnecessary calculations can be avoided by
only considering possible branch-nodes j for which dj < 1

2 ccurr with ccurr being
the costs of the so far cheapest connection.

4.3 Theoretical Comparison of LR(λ∗) and the MCF Formulation

For each concrete instantiation of λ, all subproblems obtained by the Lagrangian
decomposition are always solved to optimality and integrality. Therefore, fk ∈
conv(Fk) holds for all k ∈ C, and the abstract constraints (5) of our model (3)
to (7) can be regarded as “ideally instantiated”. Assuming we would be able to
identify an optimal Lagrange vector λ∗, the lower bound obtained by LR(λ∗))
is at least as good as the lower bound determined by an LP-relaxation of the
model. As already argued before, the MCF-formulation from [4] is weaker than an
“ideal” instantiation of the abstract model. We therefore conclude that LR(λ∗))
is stronger than the LP-relaxation of the MCF-formulation. Our experimental
results in Section 8 also clearly support this fact.

5 Neighborhoods for Improving Primal Solutions

Our algorithms make use of three types of neighborhoods. While the first two
aim at reducing the cost of a given solution, the last type consisting of two
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Fig. 5. An exemplary candidate solution and the representation of its connections

concrete neighborhoods tries to improve a solution by removing customers from
a candidate solution. Therefore, the latter is only applicable to the SST variant.

For our neighborhood structures, a candidate solution S′ = (V ′, E′, C′, X ′) is
represented, by its node set V ′, total edge set E′, feasible connected customers
C′ = {k ∈ C | yk = 1} and individual connections X ′ = {E′

k | k ∈ C′} with
E′

k = {e ∈ E′ | fk
e = 1}. In other words, E′

k is the set of edges used to eventually
connect customer k. Note that there may exist multiple connections to a single
customer node in a solution S′ in which case we store only one of them.

Furthermore, for each connection E′
k we maintain its internal structure con-

sisting of its branch-node B(E′
k) ∈ V ′, edge sets P (E′

k), Q(E′
k) ⊆ E′ of its two

paths between 0 and B(E′
k) and finally the edge set of its branch-line L(E′

k) ⊆ E′.
Note that we assume B(E′

k) = k if bmax(k) = 0 or k ∈ C1 as well as internally
define P (E′

k) to be the “first” path of a connection, i.e. P (E′
k) is used for type-1

customers while Q(E′
k) = L(E′

k) = ∅ for type-1 customers, see Figure 5. Finally,
to allow for efficient updates of a solution with respect to connections, we main-
tain for each edge e ∈ E′ a list of the customers that are connected via this edge:
Me = {k ∈ C′ | e ∈ E′

k}.

5.1 Connection Exchange Neighborhood

The Connection Exchange Neighborhood (CEN) consists of all solutions differing
from the current solution S′ by exactly one connection E′

k, see Algorithm 1.
To determine the best neighboring solution for a fixed customer k ∈ C′, CEN
calculates the saving due to removing the corresponding connection E′

k (which
is the sum of all edge costs exclusively used to connect k). The connection to
k leading to minimum additional costs is then determined by calculating the
cheapest feasible connection to k in a graph with edge costs c′e = 0, ∀e ∈ E′′ =
E′ \ {e ∈ E′

k | Me = {k}} and c′e = ce, ∀e ∈ E \ E′′. For type-1 nodes and
type-2 nodes with bmax(k) = 0, the computational complexity of finding this
new connection for one specific client node k is bounded by O(|E|+ |V | log |V |).
For type-2 customers with bmax(k) > 0, we iteratively consider each possible
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Algorithm 1. Connection Exchange (Solution S′)
c′
e = 0 ∀e ∈ E′

c′
e = ce ∀e ∈ e \ E′

dopt = 0
forall k ∈ C′ do

E′′ = {e ∈ E′
k | Me = {k}}

c′
e = ce, ∀e ∈ E′′

d =
∑

e∈E′′ ce

E′′
k = shortest connection to k using edge costs c′

d =
∑

e∈E′′ ce −
∑

e∈E′′
k

c′
e

if d > dopt then
dopt = d −

∑
e∈E′′

k
c′
e

store solution S′ with E′′
k replacing E′

k as best solution

c′
e = 0, ∀e ∈ E′′

return best solution

branch-nodes, yielding an upper bound of O(b(|E|+|V | log |V |)), with b denoting
the maximum number of possible branch-nodes. Therefore, the whole CEN which
consists of exponentially many feasible connections can be efficiently searched
for the best neighbor in O(|C| b (|E| + |V | log |V |)).

5.2 Key-Path Exchange Neighborhood

A key-node of a solution S′ is a node v ∈ V ′ \C′ with node degree degS′(v) ≥ 3,
while a key-path is a path KP = (VP, EP) whose end nodes are either key-nodes
or customer nodes k ∈ C, while all other nodes are Steiner nodes v ∈ V ′ \(C∪0)
of degree two, i.e. degS′(v) = 2. This concept of key-paths is well known for the
STP and several metaheuristic methods utilizing a key-path exchange neighbor-
hood have been proposed, see e.g. [18]. The Key-Path Exchange Neighborhood
(KPEN) given in Algorithm 2 extends this concept by exchanging key-paths
while respecting node- as well as bmax redundancy. KPEN of a candidate so-
lution S′ consists of all feasible solutions that differ from S′ by at most one
key-path. To ensure feasibility, after exchanging a key-path KP, three relevant
cases need to be considered. If KP is used to connect type-1 customer only, it
may simply be replaced by any other path, while if it is used in a branch-line
L(E′

k) of a type-2 customer k ∈ C2, the maximum length of the new path may
be at most bmax(k) −

∑
e∈(L(E′

k)\EP) le. Finally, if KP is used in the first path
P (E′

k) of a C2 customer k, all edges incident to “internal” nodes of its second
path Q(E′

k) may not be used by the new key-path to guarantee node redundancy
(and vice versa for the alternate path Q(E′

k)). All other edges e of S′ are treated
as pseudo-infrastructure, i.e. c′e = 0.

5.3 Connection Remove Neighborhood

Instead of exchanging a customer’s connection as in CEN, the Connection Re-
move Neighborhood (CRN) removes the connection to a single customer node
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Algorithm 2. Key Path Exchange (Solution S′)
determine key-paths W
dopt = 0
forall key-paths (VP, EP) ∈ W do

// actual key-path connects its end nodes m,n
c′
e = 0 ∀e ∈ E′ \ EP

c′
e = ce ∀e ∈ EP ∪ (E \ E′)

choose e ∈ EP randomly
lmax = ∞
forall k ∈ M ′

e do
if e ∈ P (E′

k) then
c′
e = ∞, ∀e ∈ E incident to a inner node of Q(E′

k)

else if e ∈ Q(E′
k) then

c′
e = ∞, ∀e ∈ E incident to a inner node of P (E′

k)

else if e ∈ L(E′
k) then

lmax = bmax(k) −
∑

e∈(L(E′
k
)\EP) le

(V ′
P, E′

P) = shortest path from m to n using c′
e with max. length lmax

d =
∑

e∈EP
ce −

∑
e∈EP′ c′

e

if d > dopt then
dopt = d
store solution S′ with (VP, EP) replacing (VP, EP) as best solution

return best solution

k ∈ C′. CRN of a current solution S′ therefore consists of all solutions S′′,
where exactly one customer connected in C′ is not connected anymore, i.e.
C′′ ⊂ C′ ∧ |C′′ \ C′| = 1. As a customer’s connection may consist of O(|V |)
edges only, CRN consisting of |C′| neighboring solutions can be searched in
O(|C′||V |) time.

5.4 Restricted Two Connection Remove Neighborhood

CRN can be easily generalized to simultaneously remove multiple customer
nodes. However, removing the connections to l > 1 customers at once will result
in |C|l neighboring solutions and the computational effort of searching such a
neighborhood would be O(|C|l|V |). We therefore concentrate on simultaneously
removing pairs of customers i, j ∈ C′, i �= j which share at least one edge exclu-
sively used by them, i.e. ∃e ∈ E′ | Me = {i, j}. The Restricted two Connection
Remove Neighborhood (R2CRN) can be searched in O(|V |min(|E′|, |C′|2)).

6 Metaheuristics

In this section we present metaheuristic approaches utilizing the neighborhoods
explained in Section 5 to compute feasible solutions. After describing a construc-
tion heuristic in Section 6.1, we present a Variable Neighborhood Search (VNS)
with embedded Variable Neighborhood Descent (VND) in Section 6.2 and – as
an alternative – a GRASP/VND hybrid in Section 6.3.
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6.1 Minimum Spanning Tree Augmentation Heuristic

We use a three-phase approach called Minimum Spanning Tree Augmentation
Heuristic (MSTAH) to construct a feasible solution for a given selection of cus-
tomers C′ ⊆ C to be connected. Initially, a Steiner tree GT is computed using the
Minimum Spanning Tree (MST) heuristic from [19]. This procedure determines a
MST TD on the distance network, which is the complete graph D = (C′, C′×C′)
with node set C′ and edge costs d(u, v) corresponding to the costs of the cheapest
paths between any u, v ∈ C′ in G. A feasible solution S′′ to the Steiner Tree Prob-
lem is derived by further computing a MST on G(TD) which is the subgraph of G
induced by all edges part of any cheapest path corresponding to an edge in TD.
In its second phase, MSTAH augments S′′ = (V ′′, E′′) by feasible connections to
C2 customers. Such connections are determined by individually calculating the
cheapest feasible connection (compare Section 4.2) for all customers k ∈ C2. All
so far selected edges e ∈ E′′ are considered as pseudo-infrastructure, i.e. having
zero costs. Finally, an edge minimal solution is extracted (i.e. no further edges
can be deleted without violating feasibility) by greedily removing unnecessary
key-paths in decreasing cost order. A similar heuristic which does not consider
bmax redundancy has been presented in [12]. Similar to MSTAH the heuristic
from [12] uses the MST heuristic [19] to compute a Steiner tree. As opposed to
MSTAH redundancy for C2 customers is ensured by adding a redundant route
to each type-2 customer avoiding any inner node of the existing primary path
using so far selected edge as pseudo-infrastructure.

6.2 Variable Neighborhood Search

We use the general VNS scheme with VND as embedded local improvement [2].
In VND, we alternate between CEN, KPEN, CRN, R2CRN in this order, with
the latter two considered only in the SST variant.

Our shaking algorithm used to escape local optima modifies a solution S′ by
excluding a subset of its Steiner nodes as well as changing the set of connected
customers C′ in the SST variant: A set of l = 1, . . . , lmax = |C| Steiner nodes
VF ⊂ V ′ \C of the current solution S′ is randomly chosen for removal. Further-
more, we select a set of m = 	 l

3
 customer nodes CC ⊂ V ′
i ∈ C at random. The

set of customers C′′ connected in the new solution S′′ is C′′ = C′�VC, i.e. we
add those customers of VC that are currently unconnected while removing the so
far connected ones. Finally, we apply MSTAH using the following adapted edge
costs c′ with a sufficiently large value for M (M � maxe∈E ce).

c′e =

⎧⎪⎨
⎪⎩

M if e is incident to a nodes v ∈ VF,

0 if e ∈ E′ and e not incident to a node v ∈ VF,

ce else.

Edge costs c′ ensure the creation of a new solution S′′ that is in general similar
to S′ while those Steiner nodes selected for exclusion will not be used unless there
is no other option to obtain a feasible solution S′′.
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6.3 Greedy Randomized Adaptive Search Procedure

As an alternative to the general VNS, we also consider a GRASP in which local
search is again performed by the above mentioned VND. A similar approach
utilizing node- and path-based neighborhoods has been already proposed for the
classical STP by Martins et al. [18]. They used a modified version of the MST
heuristic [19] in the construction phase. Similarly, we modify our construction
heuristic MSTAH by randomizing Kruskal’s algorithm for computing the MST
on the distance network D. Let dmax = max{d(u, v) | ∀(u, v) ∈ C′ × C′} and
dmin = min{d(u, v) | ∀(u, v) ∈ C′×C′} be the maximum and minimum distances,
respectively. Instead of always adding the cheapest feasible edge that connects
two yet unconnected components, the randomized spanning tree construction
selects the edge to be included next randomly from a restricted candidate list
consisting of all feasible edges (u, v) ∈ C′×C′ with d(u, v) ≤ dmin+α(dmax−dmin)
with 0 < α ≤ 1.

7 Combining Lagrangian Decomposition and Variable
Neighborhood Descent

As described in Section 4 we solve the Lagrangiandual problem of determining op-
timal λ∗ by the Volume Algorithm. In each iteration we need to determine optimal
xe variables as well as fk

e variables for the current set of Lagrangian multipliers λ.
The latter are computed by calculating individual cheapest connections for each
customer k ∈ C and eventually choosing to connect k in case it pays off. Obviously,
the graph S′ = (V ′, E′) induced by the set of edges E′ = {e ∈ E | ∃k s.t. fk

e = 1}
is a primal feasible solution. This offers multiple ways of hybridizing the La-
grangian decomposition approach with metaheuristics in order to obtain better
primal solutions and reduce the gap between lower and upper bounds.

Here, we pursue two alternatives: Either we immediately try to improve
promising solutions gained by the iterations of the Volume Algorithm, or we
store the N best solutions obtained by the Volume Algorithm and try to improve
them after termination of the Volume Algorithm. In both cases, we use VND
with CEN, KPEN, CRN, and R2CRN in this order to generate a local optimum
for a given candidate solution (CRN and R2CRN are again only considered in
the SST variant). According to the classification of hybrid metaheuristics given
in [20] the former approach is a sequential hybridization with respect to the order
of execution, while the latter falls into the category of interleaved hybridization.

As the time for performing VND on a candidate solution is not negligible, it is
critical to apply it wisely on a well-chosen subset of candidate solutions only. In
the interleaved approach, we found the following self-adaptive strategy with the
exogenous parameters δ, γ, and βmax to work well. Let S′ and S′

best be the current
and so far best solutions obtained by the Volume algorithm, respectively. VND
is applied to S′ iff c(S′) ≤ (1 + β) c(S′

best). Preliminary tests indicated that a
good value for β is not easy to find as it depends on the problem instance, and so
we automatically adapt it each δ iterations as follows. Let r be the ratio of how
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Table 1. Instance set characteristics

Set # |V | |E| |C| |C| |C1| |C1| |C2| |C2| bmax |V (bmax)|
ClgSE-I1 25 190 377 5-8 5.9 3-5 3.8 2-3 2.1 30 3.79
ClgSE-I2 15 190 377 11-17 13.8 7-12 8.9 4-7 4.9 30 8.97
ClgSE-I3 15 190 377 8-12 9.6 5-8 6.0 3-6 3.6 30 6.04
ClgME-I1 25 1757 3877 6-10 7.2 4-7 5.0 2-3 2.3 100 4.96
ClgME-I2 15 1523 3290 11-14 12.2 8-11 8.7 3-4 3.5 100 8.71
ClgN1B-I1 20 2804 3082 11-14 11.8 8-11 8.5 3-4 3.3 100 8.49
ClgN1B-I2 19 2804 3082 7-11 9.0 3-6 4.1 4-6 5.0 100 3.99
ClgN1E-I1 20 3867 8477 8-14 11 3-6 4.1 5-9 6.9 150 4.12
ClgN1E-I2 20 3867 8477 10-12 10.6 6-8 6.4 4-5 4.2 150 6.39

often VND has been applied during the last δ iterations of the Volume algorithm.
If r < γ we set β = min(2β, βmax) while β = max(β/2, βmax) if r > γ. We chose
N = 50, βmin = 0.01, βmin = 0.4, γ = 0.05 and δ = 100 and initially set β = 0.1.

Furthermore, we memorize hash-values of candidate solution which have al-
ready been used as starting solutions to avoid unnecessary runs of VND. These
hash-values are also used to ensure that the N solutions stored in the sequential
approach are pairwise different.

We initialize Lagrangian multipliers by λk,e = ce/|C| ensuring a positive lower
bound in the first iteration of the Volume Algorithm. Referring to the description
of the Volume algorithm in [15], we further configured it as follows: The target
value T is set to T = 1.1zUB with zUB being the actual upper bound unless the
actual lower bound zLB > 0.9 T in which case T is multiplied by 1.1. We initially
set f = 0.1 and α = 0.01. After 20 consecutive non-improving iterations, f is
multiplied by 0.67 in case it is greater than 10−4 and by 1.1 in an improving
iteration if f < 1. If zLB did not improve by more than 1% within the last 100
iterations and if α > 10−5, we multiply α by 0.85. The Volume Algorithm is
terminated if �zLB� = zUB, after 250 consecutive non improving iterations, or if
the maximum time limit is reached.

8 Computational Results

We used real-world instances from a German city [21] to test our approaches, see
Table 1. All experiments have been performed on a single core of an Intel Xeon
5150 with 2.66GHz and 8GB RAM; ILOG CPLEX 10.0 has been used to solve
the ILP for the MCF formulation from [4]. For GRASP we chose α = 0.25 and
generated 100 initial solutions, and the VNS was terminated after 100 iterations
of the outermost, largest shaking move. An absolute time limit of 7200 seconds
has been used for all experiments.

Table 2 compares lower bounds generated by our Lagrangian Decomposition
(LD) approach to the LP-relaxation values of the MCF formulation from [4]. RED
refers to the problem variant with standard redundancy constraints for C2 cus-
tomers while BMAX describes those experiments using bmax redundancy. As the
sequential Lagrangian Decomposition approach (SEQ) as well as the interleaved
approach (INT) yield similar bounds we only report the relative improvement of
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Table 2. Improvement of lower bounds comp. to the LP-relaxation of MCF [4] in %.

Set OPT+RED SST+RED OPT+BMAX SST+BMAX

ClgS-I1 0.00 0.05 6.83 6.98
ClgS-I2 0.00 0.14 5.98 5.96
ClgS-I3 0.00 0.51 5.53 4.95
ClgM-I1 0.00 0.00 2.04 2.04
ClgM-I2 0.00 0.15 4.54 3.71
ClgN1B-I1 0.00 3.07 - -
ClgN1B-I2 0.00 2.12 - -
ClgN1E-I1 0.00 0.14 - -
ClgN1E-I2 0.00 0.02 - -

Table 3. Relative gaps and corresponding standard deviations in %

OPT SST

Set LD SEQ INT LD SEQ INT

RED

ClgS-I1 1.77 (2.45) 1.65 (2.39) 1.63 (2.38) 1.76 (2.45) 1.65 (2.39) 1.63 (2.38)
ClgS-I2 12.80 (6.16) 9.12 (4.05) 8.84 (4.08) 13.45 (7.07) 9.98 (6.18) 9.13 (4.65)
ClgS-I3 7.49 (6.07) 5.73 (4.81) 5.54 (4.55) 8.89 (6.19) 7.28 (5.03) 7.09 (4.84)
ClgM-I1 4.29 (2.61) 2.80 (2.17) 2.70 (2.10) 4.22 (2.62) 2.80 (2.17) 2.61 (2.10)
ClgM-I2 9.88 (7.10) 6.58 (4.75) 5.89 (4.43) 11.60 (6.70) 8.50 (5.77) 7.67 (5.65)
ClgN1B-I1 4.12 (3.50) 2.82 (2.82) 2.50 (2.19) 4.17 (3.45) 2.88 (2.80) 2.58 (2.20)
ClgN1B-I2 1.96 (1.81) 1.32 (1.43) 1.27 (1.44) 1.84 (1.73) 1.34 (1.46) 1.29 (1.46)
ClgN1E-I1 3.13 (3.33) 1.51 (1.57) 1.23 (1.24) 3.08 (3.23) 1.65 (1.81) 1.23 (1.24)
ClgN1E-I2 5.62 (4.67) 3.55 (2.51) 3.21 (2.09) 5.36 (4.04) 3.53 (2.52) 3.20 (2.08)

BMAX
ClgS-I1 2.26 (3.19) 2.13 (3.00) 1.74 (2.40) 2.26 (3.19) 2.13 (3.00) 1.74 (2.40)
ClgS-I2 19.49 (7.36) 14.41 (4.46) 12.87 (4.34) 19.53 (7.11) 14.60 (4.91) 13.15 (4.89)
ClgS-I3 9.05 (7.44) 6.47 (4.47) 6.23 (4.30) 10.26 (7.67) 7.31 (4.32) 7.14 (4.21)
ClgM-I1 5.27 (3.22) 3.41 (2.14) 3.09 (1.96) 5.27 (3.23) 3.34 (2.10) 3.09 (1.96)
ClgM-I2 15.19 (9.49) 9.29 (5.66) 8.27 (4.53) 15.89 (9.37) 9.85 (5.86) 9.02 (5.16)

LD in Table 2. LD generally generates equal bounds for the OPT case when bmax-
redundancy is not considered, while the achieved lower bounds are better when
dealing with the SST variant or when considering bmax-redundancy. The LP relax-
ation of the MCF formulation from [4] could not be solved for one instance of set
ClgN1E-I1 (OPT variant) within 2 hours. Therefore, Table 2 reports the relative
improvements for the remaining 19 instances of this set.

Table 3 compares relative gaps between upper and lower bounds generated
by LD, SEQ, and INT and corresponding standard deviations (in parentheses).
In general, one can observe the expected behavior that the gap increases with
increasing number of customers.

SEQ and INT consistently yield for all problem variants and instances the
smallest gaps, which are usually significantly better than those of LD. Table
4 depicts relative improvements of the generated upper bounds compared to
LD. Without considering bmax-redundancy, INT generally finds solutions equally
good or even better than those that could be obtained by the MCF formulation
[4] within 2 hours. As the MCF formulation from [4] could not identify a feasible
solution for several instances of set ClgN1E-I1 (4 instances in the OPT variant
and 7 instances in the SST variant) we do not report the average improvement
of MCF for this set. Average values for GRASP and VNS have been computed
using 10 runs per instance.
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Table 4. Relative improvement of upper bounds compared to LD in %

Set MCF SEQ INT GRASP VNS

OPT+RED

ClgS-I1 0.14 (0.19) 0.12 (0.19) 0.14 (0.19) -0.13 (1.02) 0.12 (0.21)
ClgS-I2 3.40 (2.85) 3.15 (2.73) 3.40 (2.85) 3.03 (3.23) 3.38 (2.85)
ClgS-I3 1.74 (2.17) 1.57 (2.16) 1.74 (2.17) 1.48 (2.33) 1.63 (2.30)
ClgM-I1 1.53 (1.01) 1.41 (1.12) 1.61 (1.11) 1.54 (1.13) 1.22 (1.67)
ClgM-I2 3.18 (2.88) 2.87 (2.74) 3.51 (2.85) 3.23 (2.78) 2.73 (4.15)
ClgN1B-I1 1.50 (1.82) 1.22 (1.57) 1.51 (1.83) 1.47 (1.87) 1.41 (1.93)
ClgN1B-I2 0.66 (1.05) 0.62 (1.02) 0.67 (1.05) 0.53 (1.09) 0.67 (1.05)
ClgN1E-I1 - (-) 1.52 (1.77) 1.78 (2.00) 1.65 (2.11) 1.14 (2.04)
ClgN1E-I2 1.07 (3.32) 2.07 (2.41) 2.64 (2.74) 2.56 (2.75) 2.36 (2.78)

SST+RED

ClgS-I1 0.13 (0.19) 0.11 (0.19) 0.13 (0.19) -0.14 (1.02) 0.00 (0.43)
ClgS-I2 3.67 (2.92) 2.98 (2.90) 3.67 (2.92) 3.30 (3.33) 2.87 (3.76)
ClgS-I3 1.57 (2.38) 1.40 (2.34) 1.57 (2.38) 1.21 (2.57) 1.30 (2.43)
ClgM-I1 1.49 (0.99) 1.35 (1.05) 1.55 (1.04) 1.48 (1.06) 0.95 (1.89)
ClgM-I2 3.44 (2.67) 2.71 (2.60) 3.45 (2.62) 3.01 (2.60) 2.14 (4.14)
ClgN1B-I1 1.50 (1.80) 1.21 (1.51) 1.49 (1.82) -0.86 (7.66) 0.81 (2.25)
ClgN1B-I2 0.54 (0.89) 0.49 (0.86) 0.54 (0.89) -2.68 (6.94) -0.12 (1.83)
ClgN1E-I1 - (-) 1.35 (1.56) 1.75 (1.98) 1.60 (2.05) 0.36 (2.04)
ClgN1E-I2 1.21 (2.53) 1.88 (1.95) 2.43 (2.27) 2.10 (2.56) 1.92 (2.31)

OPT+BMAX
ClgS-I1 0.50 (1.33) 0.12 (0.24) 0.48 (1.32) 0.23 (1.82) 0.48 (1.32)
ClgS-I2 5.71 (3.90) 4.08 (3.68) 5.36 (4.04) 4.97 (4.36) 5.22 (3.97)
ClgS-I3 2.60 (3.32) 2.18 (3.31) 2.40 (3.38) 1.68 (3.95) 2.15 (3.66)
ClgM-I1 1.73 (2.13) 1.74 (1.69) 2.05 (1.87) 1.84 (1.83) 1.94 (1.90)
ClgM-I2 4.02 (6.17) 4.82 (4.99) 5.67 (5.17) 5.51 (5.11) 5.61 (5.11)

SST+BMAX
ClgS-I1 0.50 (1.33) 0.12 (0.24) 0.48 (1.32) 0.23 (1.82) 0.47 (1.32)
ClgS-I2 5.52 (4.10) 4.00 (3.23) 5.17 (4.15) 4.78 (4.41) 3.97 (4.28)
ClgS-I3 2.80 (3.70) 2.46 (3.78) 2.61 (3.77) 1.89 (4.26) 2.16 (4.03)
ClgM-I1 1.62 (1.78) 1.81 (1.67) 2.05 (1.83) 1.84 (1.83) 1.85 (1.93)
ClgM-I2 3.59 (6.94) 4.95 (4.84) 5.63 (5.08) 5.42 (5.09) 4.63 (4.87)

Table 5. Median run times

Set MCFLP MCF LD SEQ INT GRASP VNS

OPT+RED

ClgS-* 0.2 0.9 2.0 1.7 3.7 1.7 1.2
ClgM-* 58.2 3490.4 77.4 99.7 234.0 59.6 34.5
ClgN1B-* 91.5 739.0 72.3 93.2 216.5 118.6 87.2
ClgN1E-* 1103.9 7220.9 371.9 659.5 2684.9 351.6 211.9

SST+RED

ClgS-* 0.2 1.0 2.0 1.8 3.9 1.8 1.1
ClgM-* 71.1 3052.2 90.2 109.4 226.9 58.0 30.2
ClgN1B-* 96.1 603.5 68.2 101.1 203.2 115.3 77.2
ClgN1E-* 824.9 7220.9 365.4 583.7 2241.2 365.7 206.8

OPT+BMAX
ClgS-* 0.3 3.2 7.7 8.4 10.5 2.0 1.5
ClgM-* 403.6 7205.9 2865.5 3604.6 7200.0 409.8 200.5

SST+BMAX
ClgS-* 0.3 3.1 8.3 8.3 10.7 2.1 1.3
ClgM-* 380.6 7205.9 2260.4 3401.4 6214.3 400.0 181.9

Both, GRASP and VNS also produce high quality solutions with small ad-
vantages for VNS which seem to be more stable with respect to solution quality,
i.e. it almost always produces slightly better average solutions than LD. Median
run times of all approaches are given in Table 5, where MCFLP denotes the LP-
relaxation of MCF. The CPU-times of all our approaches are in the same order of
magnitude as the times for solving the LP-relaxations of the MCF formulation,
but high quality feasible solutions are identified in addition to the often bet-
ter lower bounds. In further tests we observed that VNS and GRASP typically
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produce quite good solutions very early in the search process. In that way they
might be a fast alternative to solve practical instances when no performance
guarantee is wanted.

9 Conclusions and Future Work

In this article we considered a generalized version of the (Price Collecting) Steiner
Tree Problem where some customers have redundancy requirements. Based on
an abstract version of a previously published multi-commodity flow formulation
we proposed an approach based on Lagrangian decomposition which is stronger
than the LP-relaxation of this MCF formulation from a theoretical point of
view. Promising primal solutions are directly obtained and improved by a VND
utilizing several types of neighborhoods. Furthermore, VNS and GRASP meta-
heuristics have been considered, making also use of the VND. Results indicate
that combining Lagrangian decomposition with local search based metaheuristics
produces near-optimal solutions with good performance guarantees, i.e. with rel-
atively small gaps. In future we want accomplish a more detailed computational
study with additional larger instances as well as consider an exact approach
based on branch-and-price.
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Abstract. In this work, we focus on the reconstruction of strip shred-
ded text documents (RSSTD) which is of great interest in investigative
sciences and forensics. After presenting a formal model for RSSTD, we
suggest two solution approaches: On the one hand, RSSTD can be re-
formulated as a (standard) traveling salesman problem and solved by
well-known algorithms such as the chained Lin Kernighan heuristic. On
the other hand, we present a specific variable neighborhood search ap-
proach. Both methods are able to outperform a previous algorithm from
literature, but nevertheless have practical limits due to the necessarily
imperfect objective function. We therefore turn to a semi-automatic sys-
tem which also integrates user interactions in the optimization process.
Practical results of this hybrid approach are excellent; difficult instances
can be quickly resolved with only few user interactions.

1 Introduction

In the fields of forensics and investigative sciences it is often required to recon-
struct the information hidden on destructed paper documents. Usually, paper
is destroyed by ripping up the sheets or—more professionally—by using appro-
priate shredding devices either producing thin strips or even small rectangles
or other geometric shapes like hexagons. In this work we focus on the topic of
reconstructing strip shredded text documents.

Depending on the shape, size, and the number of remnants the process of
reconstructing an original document in order to restore the lost information can
be very time consuming or practically almost impossible for a human. There-
fore, an automatic reconstruction process is desirable. Any such approach has
to acquire the strips in a first step by scanning the remnants using a (high end)
scanner. Pattern recognition and image processing tasks are applied to identify
the bounding boxes and orientations of the scanned strips and to gather infor-
mation about features like background/paper color, text color, and other helpful
features. In a second step, these attributes can be used to derive clusters of strips
potentially belonging to the same original document page(s) [1]. Unfortunately
any such system suffers from two drawbacks: Firstly, after the clustering process
no information is directly available on how the strips have to be concatenated to
form the original page(s). Secondly, any clustering approach can only marginally
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reduce the problem size or even fails if many pages containing the same or sim-
ilar features are shredded; examples are forms, tables, and any other regularly
structured document.

Motivated by these two drawbacks, we propose a new approach to the re-
construction of strip shredded text documents (RSSTD) by firstly specifying the
problem as a combinatorial optimization problem and secondly reformulating it
as the well known traveling salesman problem (TSP). Furthermore, to overcome
problems implied by the special structure of the resulting TSP and unavoidable
inaccuracies introduced by the general modeling, a new variable neighborhood
search (VNS) that is embedded in a system allowing user interaction is pre-
sented. Our practical results show that this approach combines and leverages
machine power and human experience, knowledge, and intuition in an effective
way, enabling the resolution of larger and/or more difficult RSSTD instances.

This article is structured as follows: In the next section an overview on pre-
vious and related work is given. Afterwards, our problem is formally specified.
In Section 4 the transformation to the TSP is described, and Section 5 discusses
possible definitions of the cost function related to the formulation as combinato-
rial optimization problem. Then two approaches for solving the given problem are
presented—one based on the well known Lin Kernighan heuristics for the TSP and
one based on a VNS and a system for integrating human interaction. Section 7 dis-
cusses results obtained by using our methods. Conclusions are drawn in Section 8.

2 Related and Previous Work

Although RSSTD is of great interest not only for intelligence agencies or forensics
but also for different scientific communities, there exists not much work covering
exactly this topic. A related but at the same time very different challenge is
the automated solving of jigsaw puzzles. The major difference is the fact that
for jigsaw puzzles each piece has a mostly unique shape and therefore the pure
geometric information of an element can be exploited well in the reconstruction
process. Furthermore and in contrast to most text documents, the image and
color information on the puzzle pieces can be utilized efficiently [2].

Another related topic is the reconstruction of manually torn paper documents.
There, shape information can also be exploited to some degree but may also be
misleading due to shearing effects. The first of three major approaches was pre-
sented by Justino et al. [3]. They extract characteristics of the edges of snippets
and then try to cling them together by iteratively matching the extracted fea-
tures [3]. They state in their work that the application of the proposed method
is limited to small instances of up to 15 snippets from one page.

In his master thesis, Schüller [4] proposed to use integer linear programming
based methods for exactly reconstructing manually torn documents. The tech-
niques presented in this work rely only on geometric information extracted from
the remnants and solely focus on the borders of pages to be reconstructed since
border pieces provide more reliable information and are easier to handle. Again,
the application of the algorithms is limited to small instances.
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De Smet [5] tries to exploit information implied by the relative order of snip-
pets in a stack of recovered remnants. The proposed methods are limited to
scenarios without missing snippets as well as a perfect snippet order. No details
on how to adapt the solution process to non perfect situations are given.

In contrast to the above mentioned methods, Skeoch [6] focuses on the recon-
struction of strip shredded documents but mainly discusses the scanning process
and related properties of paper strips. Further, she presents a genetic algorithm
including crossover and mutation operators as well as heuristics for generating
initial solutions to restore shredded images. In contrast to text documents, a
large amount of different colors usually exists in images and soft color transi-
tions dominate. This aspect can be efficiently exploited.

Ukovich et al. [7] tried not to reconstruct the original document pages but to
build clusters of strips belonging to the same sheet of paper by using MPEG-
7 descriptors for this task. In [1], they introduced among others features like
background and text color, line spacing and number of lines to be extracted
from documents and discussed the potential of clustering methods.

Lately, Morandell [8] formulated the RSSTD as a combinatorial optimization
problem related to the TSP. He also presents basic ideas on how to solve this new
formulation by means of metaheuristics including variable neighborhood search,
iterated local search, and simulated annealing. The results presented within this
thesis are promising and encouraged us to pursue this approach in more detail.

3 Formal Problem Specification

In this section, we present a formal problem description of RSSTD as a combi-
natorial optimization problem.

We are given a finite set S of n rectangular shaped and (almost) equally sized
paper snippets—so called strips—which have been produced by shredding one
ore more sheet(s) of paper. In this work the widths of the strips are not further
investigated since no information exploited in our approach can be extracted
from them. Furthermore, the heights of all strips are assumed to be the same.
If this is not the case, then a preprocessing step using clustering methods as
proposed in [1] can be performed. Each set of strips having the same heights in
the resulting partitioning can be used as input for our approach to RSSTD.

Although many printers are capable of duplex printing nowadays, most docu-
ments—especially in offices, one of the main application areas of shredders—are
still blank on the back face. Motivated by this observation and for simplicity our
presented model only regards the front face of the scanned strips. However, an
extension to handle two-sided documents is possible in a straightforward way.
Further, we neglect all strips of any input instance with no useful information
on them. That is, all completely blank strips as well as strips with blank borders
but non-empty inner regions are eliminated. Applying such a blank strip elimi-
nation procedure has two advantages. Firstly, symmetries implied by arbitrarily
swapping blank strips are removed, and secondly—and more importantly—the
search space is significantly reduced.
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A solution x = 〈π, o〉 to RSSTD consists of a permutation π : S → {1, . . . , n}
of the elements in set S as well as a vector o = 〈o1, . . . on〉 ∈ {up, down}n which
assigns an orientation to each strip s ∈ S:

os =

{
up if strip s is to be placed in its original orientation,

down if strip s is rotated by 180◦.
(1)

While πi denotes the strip at position i, i = 1, . . . , n, we denote the position of
a given strip s ∈ S by ps ∈ {1, . . . , n}; i.e. πi = s ↔ ps = i. By σ = 〈sj , . . . , sk〉,
with 1 ≤ j, k ≤ n, we denote a possibly empty (sub-)sequence of strips in a given
solution. Two sequences are concatenated by the · operator.

In the following we make use of a cost function c(s, s′, os, os′) ≥ 0 to be
explained later in detail, which shall provide an approximate measure for the
likelihood that two strips s and s′ appear side-by-side and oriented according
to os and os′ in the original document, i.e. correct solution. A value of zero
indicates that the contacting borders match perfectly; the larger the cost value,
the more different are these borders. The overall objective is to find a solution,
i.e. permutation and corresponding orientation vector, such that the following
total costs are minimized:

obj(x) = objl +
n−1∑
i=1

c(πi, πi+1, oi, oi+1) + objr (2)

objl = c(β, π1, oβ , o1) (3)
objr = c(πn, β, on, oβ) (4)

Hereby β denotes an additional (artificial) blank strip which is inserted at the
beginning and the end of the page(s) to be reconstructed. This is motivated
by the fact, that in most cases—especially if all strips of the original sheets of
paper have been recovered—the left and right document margins are blank. As
the costs of matching two blank borders are zero, omitting the additional terms
objl and objr would most likely lead to a solution where the first and last strips
of a correct solution are placed side-by-side. Since strip β is blank, its orientation
oβ does not have any impact.

One crucial part in solving RSSTD as stated above is a proper definition of
the cost function c(s, s′, os, os′). A detailed discussion on this topic is given in
Section 5. In any case, a cost function used for RSSTD has to have the so called
skew-symmetry property which states that the costs for placing strip s′ right to
strip s have to be the same as for rotating both strips by 180◦ and placing strip
s right to strip s′.

Before considering approaches for solving RSSTD, we show the following com-
plexity result.

Theorem 1. RSSTD is NP-hard.

Proof. Any (symmetric) traveling salesman problem (TSP) instance can be trans-
formed into a RSSTD instance by introducing a strip for each city and defining
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Fig. 1. In (a) a subgraph representing two strips s and s′ in an AGTSP instance is
depicted while in (b) the same subgraph after performing the transformation to TSP
is shown. The bold lines indicate two corresponding tours.

the cost function c(s, s′, os, os′) in correspondence to the TSP’s distances; orien-
tations are ignored. An arbitrary city can be chosen as RSSTD’s artificial blank
strip β corresponding to the left and right margins. An optimal solution to the
RSSTD instance obtained in this way obviously will also correspond to an opti-
mal solution of the original TSP. ��

4 Reformulation as Traveling Salesman Problem

In this section, we present a polynomial time transformation from for the RSSTD
into a TSP, thus the reverse direction than in the proof above, with the motiva-
tion to find RSSTD solutions via algorithms for the TSP. To achieve this, a rep-
resentation of RSSTD as an asymmetric generalized traveling salesman problem
is developed first, and in a second step, we transform this problem into a TSP.

4.1 Formulation as Asymmetric Generalized Traveling Salesman
Problem

In the asymmetric generalized traveling salesman problem (AGTSP) a directed
graph G = (V, A), with V being the set of nodes and A being the set of arcs, as
well as a partitioning of V into m disjoint, non-empty clusters Ci, i = 1, . . . , m,
is given. Furthermore, a weight wa > 0 is associated with each a ∈ A. A feasible
solution to AGTSP is a tour T ⊆ A that visits exactly one node of each cluster
Ci while minimizing the expression

∑
a∈T wa.

The following steps have to be performed for formulating RSSTD as AGTSP:

1. Introduce a cluster Cs for each strip s ∈ S consisting of two vertices vU
s and

vD
s representing the possible orientations of the corresponding strip s.

2. Introduce a cluster Cβ for the virtual blank strip β and insert one vertex vβ

into this cluster. Since β is blank no orientation information is necessary for
this strip.

3. Each pair (s, s′) of strips induces eight arcs representing the possible place-
ments of s and s′ in relation to each other, see also Fig. 1a. For instance,
arc (vD

s , vU
s′ ) represents the case that strip s′ is placed right to strip s. While

strip s is rotated by 180◦, strip s′ is positioned upright. Since strip s cannot
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be placed left (or right) to itself, it is obvious that there are no arcs between
two nodes representing the same strip.

4. Additionally, vertex vβ is connected via two reversely directed arcs with each
other node representing a strip.

5. The weights of the arcs are chosen such that for any arc a = (vos
s , v

os′
s′ ), with

s, s′ ∈ S, wa = c(s, s′, os, os′). The weights for arcs leaving or entering vβ

are chosen according to c(β, s, oβ , os) or c(s, β, os, oβ), respectively.

Obviously, an optimal solution to the AGTSP instance derived in the de-
scribed way also forms a solution to the original RSSTD instance with equal
costs when starting the tour at the virtual strip represented by vβ .

Several methods for solving AGTSP already exist like exact approaches, e.g.
a branch-and-cut algorithm [9], as well as metaheuristics, e.g. a genetic algo-
rithm [10]. Beside applying one of those algorithms specifically designed for
solving AGTSP another possibility is to transform an AGTSP instance into a
classical TSP instances and solve the latter with one of the many existing meth-
ods. In the next section we concentrate on such an approach.

4.2 Further Reformulation as TSP

The classical TSP consists of finding the shortest tour in a weighted undirected
graph G = (V, E) such that each vertex in V is visited exactly once. Let we > 0
be the weight associated with each edge e ∈ E. The length of a tour in TSP is
computed as the sum of the tour’s edge weights.

Based on the presented transformation of RSSTD to AGTSP, RSSTD can be
further translated into a TSP by first applying the polynomial time transfor-
mation into a asymmetric traveling salesman problem (ATSP) proposed in [11]
and finally applying the polynomial transformation of ATSP into TSP described
in [12]. Taking a closer look at these works, two major drawbacks can be iden-
tified. On one hand, the maximum costs for edges are dramatically increased
during the transformation from AGTSP into ATSP, which might lead to prac-
tical problems when trying to solve such transformed instances. On the other
hand, the number of nodes in G is doubled during the translation from the
asymmetric TSP to the symmetric case. Fortunately, both drawbacks can be
avoided when applying a new transformation method we specifically developed
for RSSTD.

Each instance of RSSTD can be transformed into an instance of TSP when
first applying the reformulation as ATSP presented above and then executing
the following steps. For this we adopt the idea of introducing directed cycles of
zero costs within each cluster while changing the (costs of the) outgoing arcs as
suggested by Behzad et al. in [11]:

1. We add two additional arcs—one in each direction—between nodes vD
s and

vU
s for each strip s ∈ S.

2. The weights of these new arcs are all set to zero.
3. In a next step, we swap the weights for (vD

s , vD
s′) and (vU

s , vD
s′) as well as

(vD
s , vU

s′) and (vU
s , vU

s′ ). After swapping two arcs we add a constant M to the
associated arc weights.
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4. Since the cluster Cβ consists of only one node, no transformation needs to
be done for this cluster.

In Figure 1b the adjacency matrix of a subgraph of an AGTSP instance for
RSSTD is presented. Figure 1c depicts the adjacency of this subgraph after
applying the transformation to TSP. It can be easily checked that the resulting
graph is undirected.

Theorem 2. Any weight-minimal Hamiltonian tour on a graph obtained by the
presented transformation from RSSTD can be re-transformed into an optimal
placement of strips with respect to objective function (2).

Proof. Due to the fact, that the costs for arcs connecting the nodes within a
cluster are zero, any optimal tour will visit both nodes in a cluster consecutively.
Assuming that there is one cluster Ci whose nodes are not visited consecutively,
the tour has to enter cluster Ci at least two times. Since the costs for all arcs
except for those within a cluster are equal to or greater than M , the costs of such
a tour have to be greater than (m+1) ·M , with m being the number of clusters.
Therefore, if M is chosen large enough, any tour, entering each cluster only once
is cheaper. An appropriate value for M is 1 + m · max(s,s′)∈S×S c(s, s′, oS , o′S).
Since each cluster is entered only once, we can decode the Hamiltonian tour
as a permutation of the clusters which are representing the strips in RSSTD.
Cluster Cr marks the beginning and the end of the strips’ permutation. The
orientation of each strip is set according to the node the cluster is entered by. If
the first node visited in a cluster corresponds to the orientation up then the strip
is oriented up in the corresponding solution. Analogously, orientation down is
decoded. Further, any optimal permutation Π of strips can be transformed into
an optimal tour T using the relationship described above. Assuming that there
exists a tour T ′ with lower costs than T , we can transform T ′ into a permutation
Π ′ with lower costs than Π , which is a contradiction to the assumption that Π
is minimal. ��

5 Definition of a Cost Function

One crucial point in RSSTD is the definition of an appropriate cost function
c(s, s′, os, os′) for judging the likelihood, that two strips s and s′ match under
their given orientations os and os′ . There are several different ways on how this
can be done (see also [8] on this topic), and none will be perfect in any possible
situation. In this section, we discuss some important aspects on how to design a
meaningful cost function for RSSTD.

As already mentioned above, any cost function for RSSTD needs to have
the skew-symmetry property, i.e. placing strip s′ right to strip s has to be as
expensive as placing strip s right to strip s′ but both rotated by 180◦. To sim-
plify the process of computing (good) lower bounds on RSSTD, we demand
c(s, s′, os, os′) ≥ 0 always holds.

Since it is unlikely that the images of two strips with the same physical height
and scanned with the same resolution significantly differ in the number of pixels
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(a) (b)

Fig. 2. Both solutions might be correct, but (a) is more likely

along the vertical edges, we assume for this work, that the number of pixels hs

along the y-axis is the same for all strips.
To simplify the next definitions, we consider eventual rotations of strips in the

following as already performed; i.e. when speaking about the left side of a strip
s for which oS = down, we actually refer to its original right side. The pixels
on the left or right edge are those pixels which form the left or right border,
respectively.

Since the majority of text documents are composed of black text on (almost)
white background and we mainly focus on the reconstruction of text documents,
we only consider black-and-white image data as input here. In fact, preliminary
tests have shown that the usage of finer grained color or gray-scale information
does not increase the quality of the solutions obtained by our approaches signifi-
cantly. We remark, however, that in cases where documents contain a significant
amount of different colors or gray values, an extension of our model might be
meaningful and can be achieved in a more or less straightforward way.

Let vl(s, y, os), vr(s, y, os) ∈ {0, 1} be the black-and-white values of the y-th
pixel at the left and right borders of strip s under orientation os, respectively.

The first and most straightforward approach for defining a cost function
c1(s, s′, os, os′) is by simply iterating over all pixels on the right border of strip
s and compare it to the corresponding pixel on the left border of strip s′. Since
we defined RSSTD as a minimization problem the value of c1(s, s′, os, os′) is
increased by one if two corresponding pixels do not have the same values:

c1(s, s′, os, os′) =
hs∑

y=1

|vr(s, y, os) − vl(s′, y, os′)| (5)

The evaluation of this cost function can be performed efficiently, but there are
some situations in which it returns misleading information. For an example see
the cases depicted in Figs. 2a and 2b. Of course, it is not possible to automatically
decide which of the two alignments always is the correct one. Nevertheless, the
situation in Fig. 2a is intuitively much more likely. Therefore, we want this
alignment to receive a better evaluation than the arrangement of Fig. 2b. Hence,
we adopt the idea presented in [13] to additionally consider the values of two
pixels above and two pixels below to the currently evaluated position:

c2(s, s′, os, os′) =
hs−2∑
y=3

p(s, s′, os, os′ , y) (6)
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p(s, s′, os, os′ , i) =

{
1 if p′(s, s′, os, os′ , i) ≥ τ

0 otherwise
(7)

p′(s, s′, os, os′ , i) = |0.7 · vr(s, os, i) − 0.7 · vl(s′, os′ , i)
+ 0.1 · (vr(s, os, i + 1) − vl(s′, os′ , i + 1))
+ 0.1 · (vr(s, os, i − 1) + vl(s′, os′ , i − 1))
+ 0.05 · (vr(s, os, i + 2) + vl(s′, os′ , i + 2))
+0.05 · (vr(s, os, i − 2) + vr(s′, os′ , i − 2))| (8)

The threshold value τ used in the definition of p(s, s′, os, os′ , i) has to be chosen
carefully. A good value, in particular also for handling the special case depicted
in Fig. 2, is 0.1.

6 Solving RSSTD

In this section we present our concrete solution approaches for RSSTD.

6.1 Solving RSSTD Via Its Reformulation as a TSP

Using the transformation of RSSTD to TSP as presented in Section 4.2 and cost
function c2(s, s′, os, os′) defined in Section 5 it is obvious to apply approaches
developed for the TSP on RSSTD. Since the number of nodes in the graph un-
derlying the TSP is always twice the number of strips in the original RSSTD
instance and this number can be quite large exact algorithms might not be appli-
cable for real world instances. Therefore, we decided to use the implementation
of Applegate et al. [14] of the Chained Lin-Kernighan heuristic [15] for solving
the transformed RSSTD. Detailed results are presented in Section 7.

6.2 Solving RSSTD Via VNS and Human Interaction

Even the “most precise” cost function and an exact solution of our RSSTD
model will not always yield a correct arrangement fully representing the original
document before destruction. The reason is that the cost function only is an
(approximate) measure for the likelihood of two strips appearing next to each
other. However, documents also may contain unlikely scenarios. Furthermore,
text may be arranged in columns with empty parts in between. It is then im-
possible to find the correct order of the separated text blocks without having
more specific knowledge of the documents content. Additionally applying heav-
ier pattern recognition and knowledge extraction techniques might be feasible
for certain applications but will also dramatically increase running times.

Instead, we leverage here the power of human knowledge, experience, and intu-
ition in combination with a variable neighborhood search metaheuristic. When
confronted with a candidate solution, a human often can decide quite easily
which parts are most likely correctly arranged, which strips should definitely
not be placed side-by-side, or which parts have a wrong orientation.
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The idea of systematically integrating human interaction in an optimization
process is not new. Klau et al. [16,17] give a survey on such approaches and
present a framework called Human Guided Search (HuGS). The implementation
is primarily based on tabu search, and the success of this human/metaheuristic
integration is demonstrated on several applications.

Variable Neighborhood Search in HuGS. Since preliminary tests for solv-
ing RSSTD with tabu search as implemented in HuGS did not convince, we
considered also other metaheuristics and finally decided to use a (general) vari-
able neighborhood search (VNS) [18] with embedded variable neighborhood de-
scent (VND) for local improvement. VNS is a metaheuristic based on the general
observation that the global optimum always has to be a local optimum with re-
spect to any possible neighborhood. The key-idea is to perform a local search and
switch between multiple neighborhood structures in a well-defined way, whenever
a local optimum has been reached. For more details on the general algorithm we
refer to [18].

In our approach, a solution to RSSTD is represented by three arrays corre-
sponding to the strips permutation π, the vector p storing the position for each
strip, and the orientation vector o. Note that π and p are redundant, but the
evaluation of the neighborhoods can be more efficiently implemented when both
are available.

Neighborhoods for VNS and VND. Several different move types are used
within VND and VNS. The most intuitive move is called shifting (SH) and
simply shifts one strip by a given amount to the right or left. More formally it
can be written as

SH(σ1 · 〈si〉 · σ2 · 〈sj〉 · σ3, i, j) = σ1 · 〈sj〉 · 〈si〉 · σ2 · σ3 (9)
or

SH(σ1 · 〈sj〉 · σ2 · 〈si〉 · σ3, i, j) = σ1 · σ2 · 〈si〉 · 〈sj〉 · σ3 (10)

with 1 ≤ i, j ≤ n. In this context σk denotes a possibly empty subsequence
of strips. A second move, called swapping (SW), is defined by swapping two
arbitrary elements with each other. In a formal matter, this can be written as

SW(σ1 · 〈si〉 · σ2 · 〈sj〉 · σ3, i, j) = σ1 · 〈sj〉 · σ2 · 〈si〉 · σ3 (11)

with 1 ≤ i < j ≤ n. Both moves, shifting and swapping, can be extended to
block moves. In the latter case, called block swapping (BS), this results in a move
swapping two arbitrarily long, non-overlapping subsequences of strips with each
other. The other block move, namely block shifting, is equivalent to swapping
two adjacent blocks with each other. Therefore, it is not explicitly defined in our
environment. A block swap move can be formally written as

BS(σ1 · 〈si, .., si+k〉 · σ2 · 〈sj, .., sj+k′ 〉 · σ3, i, j, k, k′) =
σ1 · 〈sj , .., sj+k′ 〉 · σ2 · 〈si, .., si+k〉 · σ3 (12)
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Table 1. Neighborhood structures defined for VND

neighborhood structure N1 N2 N3 N4 N5

move type R SW SH BR BS
number of candidates O(n) O(n2) O(n2) O(n2) O(n4)

with 1 ≤ i < i + k < j < j + k′ ≤ n. In addition to this four move types related
to the assignment of strips to positions, two further moves for changing the
orientation of a strip or a block of strips, called rotating (R) and block rotating
(BR) respectively, are defined. Rotating simply rotates one strip by 180◦, while
block rotating executed on positions i to j first rotates all strips in this interval
and in a second step swaps strips at positions i and j, i+1 and j−1, and so on.
Using incremental evaluation schemes, each presented move can be evaluated in
constant time.

In our VND, the five neighborhood structures induced by our moves are con-
sidered in the order shown in Table 1, thus, sorted by their sizes. As step function
best improvement as well as next improvement have been implemented. For shak-
ing in VNS, i random swap moves, with 1 ≤ i ≤ 4, are performed. As initial
solution a random solution is used.

6.3 User Interactions

For the integration of user interaction into the optimization process a set of valid
user moves has to be defined. All previously described move types are contained
in this set of allowed user actions. Additionally, the user can
– forbid “wrong” neighborhood relations between pairs of strips;
– lock “correct” subsequences of strips, which are concatenated and in the

further optimization process considered as atomic meta-strips;
– lock the orientation of strips.

All of these actions also can be reverted, should the user reconsider his earlier
made decisions. Our extensions of the HuGS framework provide an easy and in-
tuitive way to visualize candidate solutions, perform the mentioned user actions,
or to let VNS or the Lin Kernighan based approach continue for a while.

A main advantage of integrating human power into the search procedure is in
fact that with each additional lock of strips or forbidden neighborhood relation
the solution space is pruned. For example, by fixing the relative order of two
strips, the number of valid solutions in the search space is divided by n.

An usual approach for a semi-automatic reconstruction of strip shredded text
documents would be to first execute the TSP solver to obtain a good initial
solution. Then, assuming that this solution is not already perfect, either some
user moves are applied or, if there is no obvious correct subsequence of strips to
be concatenated or wrongly rotated strips, VNS would be executed. Afterwards,
a human inspection combined with user moves is performed. The last two steps
will be repeated until either no improvement can be achieved or a solution of
desired quality is obtained.
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7 Experimental Results

In this section we present computational results comparing both introduced ob-
jective functions c1 and c2 and the different approaches. All experiments were
performed on a Dual Core AMD Opteron 2214 with 4GB RAM. Both the HuGS
framework and our VNS approach were implemented in Java. The Concorde
TSP solver implemented by Applegate1 was used and integrated into the Java
evironment by using the Java Native Interface. The test instances were gener-
ated by virtually shredding paper documents, i.e. by either using scanned images
or images extracted from PDF-files and cutting them into a defined number of
equally sized strips. We remark that a real cutting and scanning process may
loose some information or introduce errors, but neglect such effects in this work.

Quality of Solutions. As we want to find out which objective function intro-
duced before is better suited for reconstructing strip shredded text documents,
we define the quality of a solution as the number of correctly reconstructed subse-
quences of strips w.r.t. the original document. Note that the length of a correctly
identified subsequence, i.e. the number of its strips, has no effect on our quality
measure. This is motivated by the empiric observation that the text contained
on reconstructed pages up to quality five usually can be read relatively easily.
For any solutions with quality values larger than six it is typically very hard or
almost impossible to the read the contained text. Further, this rating method
enables us to compare results obtained for different strip widths and/or number
of strips for one document.

Comparison of Results. For the results shown here we used six test instances
that were shredded using different numbers of strip widths. While instances p1
to p5 consist of single text pages possessing different features (p1 and p3 are
composed of continuous text only, instance p2 contains an image of a table, p4
offers a listing, and p5 shows a table with horizontal and vertical lines), instance
p6 is the instance presented in [1] and consists of 10 pages with both printed
and handwritten text. After virtually shredding the pages, a preprocessing step
is performed on all instances, such that blank strips are eliminated.

Table 2 lists results obtained by applying the TSP solver on instances p1
to p6. We solved the instances using objective function c1 as well as objective
function c2 and limited the CPU-time to 5 and 50 seconds, respectively. All
values are average qualities over 30 runs. It can be observed that—especially
for instances p2, p4 and p6—the qualities obtained by using function c2 are
remarkable better than those obtained by using c1. Even for the short runs the
standard deviations are very small and the improvement on the quality is not
notable if the time limit is raised to 50 seconds. Log files show that in most
cases the final solution was found after 0.5 seconds. In particular for the 10-page
instance p6, the results are remarkably good. For 150 strips and cost function c2

only 3 or 4 of the 10 pages were solved to quality 2; all others have quality 1. For
300 strips only 2 pages were always solved to quality 1 but for comparison with
1 Code available at www.tsp.gatech.edu/concorde/.
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Table 2. Average qualities of final solutions from the TSP solver comparing cost
functions c1 and c2. Standard deviations are given in parentheses.

page p1 p2 p3 p4 p5 p6
time 5 s. 50 s. 5 s. 50 s. 5 s. 50 s. 5 s. 50 s. 5 s. 50 s. 5 s. 50 s.

30
st

ri
ps c 1

1.4 2.0 2.4 4.0 1.5 1.0 1.5 2.0 1.3 2.0 1.6 2.0
(0.5) (0.0) (1.4) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0)

c 2

1.4 1.0 1.5 2.0 1.6 2.0 1.7 2.0 1.5 1.0 1.6 2.0
(0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0)

50
st

ri
ps c 1

1.6 2.0 9.4 9.0 1.6 1.0 5.4 5.0 9.4 10.0 1.3 2.0
(0.5) (0.0) (0.7) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0)

c 2

1.4 2.0 4.1 5.0 1.5 2.0 1.4 1.0 1.4 2.0 1.5 2.0
(0.5) (0.0) (0.7) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0)

10
0

st
ri

ps c 1

4.6 2.0 18.2 18.0 1.5 1.0 20.4 17.0 15.4 15.0 1.3 1.4
(0.5) (0.0) (0.8) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.4) (0.5)

c 2

1.5 2.0 11.8 13.0 1.4 1.0 3.8 5.0 5.5 6.0 1.4 2.0
(0.5) (0.0) (1.2) (0.0) (0.5) (0.0) (1.6) (0.0) (0.5) (0.0) (0.5) (0.0)

15
0

st
ri

ps c 1

5.5 7.0 31.9 34.0 1.5 2.0 27.2 29.0 37.7 34.5 14.8 4.6
(0.6) (0.0) (0.7) (0.0) (0.5) (0.0) (1.0) (0.9) (0.5) (0.5) (0.8) (0.5)

c 2

1.5 2.0 26.5 25.0 1.5 1.0 16.7 16.0 9.4 6.0 4.5 5.0
(0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.9) (0.0) (0.5) (0.0) (0.5) (0.0)

30
0

st
ri

ps c 1

38.6 27.6 108.1 103.3 7.5 8.0 67.5 65.3 93.3 83.8 107.1 15.7
(0.7) (0.5) (0.8) (1.1) (0.5) (0.0) (0.6) (0.9) (1.1) (0.7) (1.6) (1.0)

c 2

1.6 2.0 78.3 73.0 1.5 1.0 41.5 43.0 27.4 27.0 14.3 14.0
(0.5) (0.0) (0.6) (0.0) (0.5) (0.0) (0.5) (0.0) (0.5) (0.0) (0.7) (0.0)

Table 3. Average qualities of final solutions when applying VNS comparing cost func-
tions c1 and c2. Standard deviations are given in parentheses.

page p1 p2 p3 p4 p5 p6
impr next best next best next best next best next best next best

30
st

ri
ps c 1

2.0 2.0 2.8 3.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0
(0.0) (0.0) (1.3) (1.4) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

c 2

2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

50
st

ri
ps c 1

4.0 4.0 11.6 11.6 2.0 2.0 4.3 4.7 10.2 10.1 1.0 1.0
(0.0) (0.0) (1.4) (1.6) (0.0) (0.0) (1.2) (1.7) (0.4) (0.5) (0.0) (0.0)

c 2

2.0 2.0 4.7 5.8 2.0 2.0 3.2 3.3 2.1 2.2 1.0 1.0
(0.0) (0.0) (1.2) (2.3) (0.0) (0.0) (0.4) (0.5) (0.4) (0.9) (0.0) (0.0)

10
0

st
ri

ps c 1

2.5 3.0 20.5 20.7 2.1 2.4 13.2 14.0 17.8 19.0 1.0 1.0
(1.5) (2.1) (2.2) (2.2) (0.7) (1.2) (3.3) (2.8) (2.8) (3.0) (0.0) (0.2)

c 2

2.0 2.0 14.8 15.5 2.0 2.0 7.1 6.6 6.2 6.5 1.0 1.0
(0.0) (0.0) (2.5) (3.1) (0.0) (0.0) (1.7) (1.8) (0.6) (0.9) (0.0) (0.0)

15
0

st
ri

ps c 1

27.7 26.8 37.3 38.9 25.6 27.8 27.8 28.7 41.4 45.6 4.8 4.9
(6.7) (8.4) (2.0) (2.4) (7.6) (9.6) (2.2) (3.1) (7.3) (7.4) (1.5) (1.4)

c 2

19.5 22.4 26.0 27.2 16.8 16.7 18.7 18.7 19.6 23.8 5.6 4.4
(7.1) (6.6) (1.8) (1.7) (6.8) (9.6) (2.5) (1.9) (7.6) (9.6) (1.4) (0.8)

the results presented in [1] we performed also tests with 340 strips on instance
p6. This time 16 out 30 runs were solved to optimality for all other only one page
was solved to quality 2 while all other were completely reconstructed. Especially
when considering the time limit of 5 seconds, our methods clearly outperform
those from Ukovich et al. [1].
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Average results obtained when applying VNS without human interaction are
presented in Table 3. For examining the neighborhoods we tested with both next
as well as best improvement strategies, and no iteration or time limit was given.
Again, the values presented are from 30 runs. We used the order of neighborhoods
as presented in Section 6.2 but omitted the examination of the block swapping
neighborhood N5 for instances with more than 100 strips as the size of this
neighborhood is in O(n4). We can observe that the results obtained for objective
c2 are in general better than or equal to the results obtained for c1, but no
conclusions can be drawn which step function performs better for RSSTD. Based
on the poorer performance of VNS on instances with more than 100 strips we
conclude that neighborhood N5 substantially contributes to the success of VNS.

Finally we tested out semi-automatic system as it would be used in practice for
reconstructing strip shredded text documents. With only few user interactions
we were able to quickly restore all original documents by exploiting the benefits
of the hybridization of machine and human power.

8 Conclusions

In this work, we presented a polynomial time transformation of the RSSTD to
the symmetric TSP. We applied a chained Lin Kernighan heuristic as well as a
newly introduced VNS for solving the RSSTD and showed that both methods are
competitive with each other. In particular they clearly outperform the previous
method from Ukovich et al.

Anyway, both approaches suffer from the necessarily imperfect objective func-
tion, which is only based on estimations of the likelihoods that strips shall be
placed side-by-side under given orientations. Therefore, we embedded the al-
gorithms in the HuGS-framework and gave the user the possibility to interact
with the optimization in flexible ways. This turned out to work excellently. In
this semi-automatic way, all test instances could be completely restored in very
short time with only few user interactions. We consider the reconstruction of
strip shredded text documents therefore as a superior example, where neither
metaheuristics (and other other automated optimization techniques) nor human
are able to produce satisfactory results, but a hybrid approach performs very
well due to the combination of the different strengths.
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Abstract. This paper deals with the Tool Switching Problem (ToSP), a
well-known problem in operations research. The ToSP involves determin-
ing a job sequence and the tools to be loaded on a machine with the goal
of minimizing the total number of tool switches. This problem has been
tackled by a number of algorithmic approaches in recent years. Here, we
propose a memetic algorithm that combines a problem-specific permuta-
tional genetic algorithm with a hill-climbing procedure. It is shown that
this combined approach outperforms each of the individual algorithms,
as well as an ad-hoc beam search heuristic defined in the literature for
this problem.

1 Introduction

For some time now, the manufacturing industry is more and more often demand-
ing flexible manufacturing systems (FMSs) as an alternative to traditional rigid
production systems. This increasing interest is motivated by the fact that FMSs
have the ability for self-adjustment to generate different products and/or change
the order of product generation, i.e., they incorporate versatility and efficiency
in mass production [1]. Basically, a FMS consists of a single machine that has
several slots into which different tools can be loaded. Each slot just admits one
tool, and each job executed on that machine requires a particular set of tools
to be done. Jobs are sequentially executed, and therefore each time a job is to
be processed, the corresponding tools must be loaded in the machine magazine.
Since the number of available slots is limited, it may be required at some point
to perform a tool switch, i.e., removing a tool from the magazine and inserting
another one in its place. In this context, tool management is a challenging task
that directly influences the efficiency of flexible manufacturing systems.

Although the order of tools in the magazine is often irrelevant, the need
of performing a tool switching does depend on the order in which the jobs are
executed. The Tool Switching Problem (ToSP) consists of finding an appropriate
job sequence in which jobs will be executed, and an associated sequence of tool
switches that minimizes the number of tool loading/unloading operations in the

M.J. Blesa et al. (Eds.): HM 2008, LNCS 5296, pp. 190–202, 2008.
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magazine. Clearly, this problem is specially interesting when the time needed
to change a tool is a significant part of the processing time of all the jobs (and
hence the tool switching policy will significantly affect the performance of the
system). Different examples of the problem can be found in diverse areas such
as electronic industry, metalworking industry, computer memory management,
aeronautics, and manufacturing companies in general [1,2,3,4,5]. The ToSP has
also a number of variants; see for example [6,7,8].

Despite the ToSP has been tackled via different optimization techniques (in-
cluding exact and metaheuristics methods – see next section), to the best of our
knowledge, no population-based algorithm (let alone a hybrid population-local
approach) has been applied to its resolution. This paper gives a first step in this
direction and demonstrates empirically that hybrid evolutionary techniques are
effective solving strategies for this problem.

2 The Tool Switching Problem

Before getting to the algorithmic approaches considered for tackling the ToSP,
let us describe more formally the problem, and previous related work in the
literature.

2.1 Problem Formulation

As mentioned before, the ToSP involves scheduling a number of jobs on a single
machine such that the resulting number of tool switches required is kept to a
minimum. This can be formalized as follows: let a ToSP instance be represented
by a 4-tuple, I = (C, n, m, A) where

– C denotes the magazine capacity (i.e., number of available slots),
– n is the number of jobs to be processed,
– m is the total number of tools required to process all jobs (it is assumed that

C < m; otherwise the problem is trivial).
– A is a m×n Boolean matrix termed the incident matrix. This matrix defines

the tool requirements to execute each job, i.e., Aij =TRUE if, and only if, tool
i is required to execute job j.

The solution to such an instance is a sequence J1, · · · , Jn determining the order
in which the jobs are executed, and a sequence T1, · · · , Tn of tool configurations
(Ti ⊂ {1, · · · , m}) determining which tools are loaded in the magazine at a
certain time.

Let Nk = {1, · · · , k} henceforth. An integer linear programming (ILP) formu-
lation for the ToSP is shown below, using two sets of zero-one decision variables:

– xjk = 1 if job j ∈ Nn is assigned to position k ∈ Nn in the sequence, and 0
otherwise – see Eqs. (2) and (3),

– yik = 1 if tool i ∈ Nm is in the magazine at time k ∈ Nn, and 0 otherwise –
see Eq. (4).
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Processing each job requires a particular collection of tools loaded in the mag-
azine. It is assumed that no job requires a number of tools higher than the
magazine capacity, i.e.,

∑m
i=1 δAij ,TRUE � C for all j, where δij is Kronecker’s

delta. Tool requirements are reflected in Eq. (5). Following [1], we assume the
initial condition yi0 = 1 for all i ∈ Nm. This initial condition amounts to the
fact that the initial loading of the magazine is not considered as part of the cost
of the solution (in fact, no actual switching is required for this initial load). The
objective function F (·) counts the number of switches that have to be done for
a particular job sequence – see Eq. (1).

min F (y) =
n∑

j=1

m∑
i=1

yij(1 − yi,j−1) (1)

∀j ∈ Nn :
n∑

k=1

xjk = 1 (2)

∀j ∈ Nn :
n∑

k=1

xkj = 1 (3)

∀k ∈ Nn :
m∑

i=1

yik � C (4)

∀j, k ∈ Nn ∀i ∈ Nm : Aijxjk � yik (5)

∀j, k ∈ Nn ∀i ∈ Nm : xjk, yij ∈ {0, 1} (6)

It must be noted that the general definition above can be augmented if addi-
tional constraints are posed on tools or on the magazine. For example, it might
be the case that different tools require slots of different sizes (or more than one
slot). This is the so-called non-uniform ToSP [9]. Be as it may, we will consider
in the following the uniform ToSP as previously defined.

2.2 Related Work

References to the ToSP can be found in the literature as early as in the 60’s
[2]. Since then, the uniform ToSP has been tackled via many different tech-
niques. The late 80’s contributed specially to solve the problem [10,11]. Tang
and Denardo [3] proposed an ILP formulation of the problem, and later Bard
[1] described a non-linear integer programming formulation with a dual-based
relaxation heuristic.

Heuristics-based constructive methods have also been applied to the problem.
For instance Djellab at al. [12] tackled ToSP via a hypergraph representation and
proposed a particular heuristic oriented towards minimizing the number of (total
weighted) gaps in edge-projection where a projection is basically a permutation
satisfying some specific constraints; the hypergraph is used to represent the
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relation among jobs and the needed tools. Also, Hertz et al. [13] described three
constructive methods (i.e., FI, GENI and GENIUS) in which at each step both a
job to be inserted in current tour and the best position in the tour are selected.
Additionally, nearest neighbor (NN) and 2-opt search were also considered.

Exact methods have been also applied to the problem. For instance, Laporte
et al. [14] propose two exact algorithms: a branch-and-bound approach and a a
linear programming-based branch-and-cut algorithm. Precisely this last one is
based on a new ILP formulation having a better linear relaxation than that
proposed previously by Tang and Denardo [3]. It must be noted that these
exact methods are inherently limited, since Oerlemans [15] and Crama et al.
[16] proved formally that the ToSP is NP-hard for C > 2. This limitation was
already highlighted in [14], where Laporte et al. reported that their algorithm
was capable of managing instances with 9 jobs but it presented a very low success
ratio for instances over 10 jobs.

Clustering/grouping methods have also been attended. For instance, Salonen
et al. [17] attacked the uniform ToSP of printed circuit boards (PCBs) and
described an algorithm that iterated the process of first determining a good (or
even optimal) grouping of the PCBs for further sequencing them. A hierarchical
job grouping technique, based on the Jaccard similarity coefficient as clustering
criterion, is additionally employed to avoid identical groupings.

The use of metaheuristics has been also recently considered. So, several tabu
search approaches [17,18,19] have been used in the literature. A different, and
very interesting, approach has been described by Zhou et al. [20] that proposed a
beam search algorithm. This method was demonstrated to be specially efficient
and practical compared to other techniques previously presented. The reason
provided to justify this efficiency was that the performance of the algorithm
can be adjusted by changing the search width and the evaluation functions. We
will return later to this approach since, due to its proved efficiency, it has been
included in our experimental comparison.

In any case, to the best of our knowledge, no population-based algorithm has
been proposed so far to solve this problem.

3 Solving the ToSP

The ToSP can be divided into three subproblems [21]: the first subproblem is
machine loading and consists of determining the sequence of jobs; the second
subproblem is tool loading, consisting of determining which tool to switch (if a
switch is needed) before processing a job; finally, the third subproblem is slot
loading, and consists of deciding where (i.e., in which slot) to place each tool.
We are considering the uniform ToSP, and therefore only two subproblems have
to be taken into account: machine loading and tool loading.

As it will be shown in next subsection, the tool loading subproblem can be
optimally solved if the sequence of jobs is known by following a specific tool
switching policy (described in Section 3.1) that guarantees to obtain the optimal
number of tool switches for a given job sequence. Therefore, the metaheuristic
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effort is concentrated on the machine loading stage. For this purpose, we will
consider the use of memetic algorithms (MAs). As already mentioned, the beam
search heuristic defined by Zhou et al. [20] is used for comparison purposes in
the experimental section (see Section 5) and will be also described for the sake
of completeness in Section 3.2.

3.1 The KTNS Method for Tool Loading

In the context of the uniform ToSP, the cost of switching a tool is considered a
constant (the same for all tools). Under this assumption, if the job sequence is
fixed, the optimal tool switching policy can be determined in polynomial time
using a greedy procedure termed Keep Tool Needed Soonest (KTNS) [1,3]1. The
functioning of this procedure is as follows:

1. At any instant, insert all the tools that are required for the current job.
2. If one or more tools are to be inserted and there are no vacant slots on

the magazine, keep the tools that are needed soonest. Let J = 〈J1, · · · , Jn〉
be the job sequence, and let Ti ⊂ Nm be the tool configuration at time i.
Let Ξik(J) = min

{
j | (j > k) ∧ Ai,Jj

}
, that is, the next instant after time

k at which tool i will be needed again given sequence J . If a tool has to
be removed, the tool i∗ maximizing Ξik(J) is chosen, i.e., remove the tools
whose next usage is farther in time.

The KTNS policy states that when tool changes are necessary, the tools re-
quired for an upcoming job should be kept in the magazine. As a side remark,
the tool loading problem is NP-hard in the non-uniform ToSP, even if the job
sequence is known and unit loading/unloading costs are assumed [9].

3.2 A Beam Search Heuristic

The beam search algorithm defined by Zhou et al. [20] is a powerful approach to
tackle the ToSP. Beam search is a derivative of branch-and-bound that uses a
breadth-first traversal of the search tree, and incorporates a heuristic choice to
keep at each level only the best (according to some quality measure) β nodes (the
so-called beam width). This sacrifices completeness, but provides a very effective
heuristic search approach.

The best β nodes are selected by one-step priority evaluation functions which
estimate the cost of expanding the current solution. Note that nodes in the beam
represent partial solutions (i.e., sequences of λ jobs 〈J1, · · · , Jλ〉 with λ < n; if
λ = n they actually represent solutions). For each node in the current level,
a decision about which job will be added to the partial sequence is done. Let
τj = {i | Aij = TRUE}, i.e., the set of tools required by job j. Two simple
functions are used to ensure the quality of the solutions obtained:

h1(J, k) = #(τJk
∩ τJk+1) (7)

h2(J, k) = #(τJk
∪ τJk+1) (8)

1 As B�lażewicz and Finke [7] point out, the KTNS property was already known to
Belady[2].
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where #S is the cardinality of set S. Thus, h1(J, k) returns the number of
common tools needed to process job Jk and candidate job Jk+1 to be added to
the partial job sequence. As to h2(J, k), it computes the total number of tools
required to process job Jk and the candidate job Jk+1. These functions are used
to select the beam nodes in each level, trying to maximize h1 and using h2 (to
be minimized) to break ties.

4 A Memetic Approach to the ToSP

According to the previous discussion, the role of the MA is to determine the best
job sequence, such that the total number of switches is minimized. Therefore, a
permutational encoding arises as the natural way to represent solutions. Next
sections will be devoted to describe our evolutionary algorithm, the neighbor-
hood structures defined on the permutational encoding, and how these are used
within the evolutionary algorithm to produce a memetic algorithm.

4.1 A Population-Based Attack to the ToSP

We have considered a steady-state genetic algorithm (GA) to evolve promising
job sequences: a single solution is generated in each generation, and inserted in
the population replacing the worst individual. Selection is done by binary tourna-
ment. For recombination we initially explored two schemes: the well-known order
crossover (OX), and a crossover scheme named Alternating Position (APX) that
consists in select genes alternating of each parents [22]. Preliminary experiments
that we executed showed that the employment of APX provided better results, in
terms of solution quality, than using OX so that we elected APX as the crossover
operator.

For the purposes of mutation we have considered the block neighborhood.
This neighborhood is proposed for the ToSP in [19] and is based on swapping
whole segments of contiguous positions. The resulting mutation operator is called
Random Block Insertion (RBI) and works as follows:

1. A block length bl ∈ Nn/2 is uniformly selected at random.
2. The starting point of the block bs ∈ Nn−2bl

is subsequently selected at
random.

3. Finally, an insertion point bi is selected, such that bs + bl � bi � n− bl, and
the segments 〈bs, bs + bl〉 and 〈bi, bi + bl〉 are swapped.

Obviously, if the block length bl = 1 then the operation reduces to a simple
position swap, but this is not typically the case when performing mutation.

4.2 Local Search

A specific local search approach considered in this work is based on the well-
known all-pairs neighborhood, i.e., two permutations are neighbors if they just
differ in two positions of the sequence. A steepest-ascent hill climbing (HC)
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approach is defined on the basis of this neighborhood structure: the neighborhood
N (x) of the current solution x is partially traversed, and the best solution found
is taken as the new current solution, provided it is better than the current one
(otherwise, it is considered that there is a stagnation).

Note that the exploration of the whole neighborhood is not executed as this
process becomes more and more costly as the number of jobs increases e.g., for
50 jobs, the number of neighbors for a given candidate is 1225. For this reason
only a set Nx ⊂ N (x), with #Nx = αn, is explored in each step of the HC
method. The selection of candidates in Nx is done randomly.

4.3 The Memetic Proposal

On the basis of the previously described GA, we have defined a memetic algo-
rithm (MA) by endowing the GA with a local search scheme. To be precise, we
have used the all-pairs hill climbing algorithm defined in Section 4.2 just after
the mutation stage. This local search is performed for a number of maxEval
evaluations, or until it stagnates. It must be also noted that the local search is
always performed on every new individual generated.

In all our proposals (i.e., HC, GA and MA) the fitness of the candidate is ob-
tained by the value returned after applying the KTNS method to the candidate.
The objective is thus minimizing this value.

5 Experimental Results

The experiments have been performed using four different algorithms: the beam
search (BS) presented in [20] and described in Section 3.2, and the three algo-
rithms proposed in preceding section, that is to say, a steady-state permutational
GA, an steepest-ascent hill climbing (HC) search and a memetic algorithm. In the
case of BS, five different equally-spaced values between 1 and 5 were considered
for the beam width. As to the HC, the value α = 4 was chosen for exploration of
the neighborhood. Also, when HC is working alone, each time that local search
is considered stagnated this is reactivated from a randomly selected candidate;
when used inside the MA as an improvement operator, the HC is executed until
reaching a stagnation or a maximum number of evaluations (i.e., exactly 1000;
obviously there is no reactivation from a random point). As to the GA (and
subsequently to the MA), an elitist generational model replacing the worst in-
dividual of the population (popsize = 30, pX = 1.0, pM = 1/n where n is the
number of jobs i.e., number of genes per individual) with binary tournament
selection has been utilized; alternating position crossover (APX) is used, and
mutation is done by applying the RBI operator. As to the MA, HC was always
applied to each offspring generated after the mutation step (i.e., the probability
of improvement was 1.0). The election of the parameter values (including the
value for α) was done after an extensive phase of experimentation with many
different values. The best combinations of the values were finally selected.

As far as we know, no standard data instance exists for this problem (at least
publicly available) so that we have arbitrarily selected a wide set of problem
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Table 1. Problem Instances considered in the experimental evaluation. The minimum
and maximum of tools required for all the jobs is indicated in second and third rows
respectively. Fourth row display the bibliography reference from which the problem
instance was obtained.

4ζ10
10 4ζ9

10 6ζ15
10 6ζ12

15 6ζ20
15 8ζ15

20 8ζ16
20 10ζ20

20 24ζ30
20 24ζ36

20 30ζ40
20 10ζ25

30 15ζ40
30 15ζ30

40 20ζ60
40 25ζ40

50

Min. 2 2 3 3 3 3 3 4 9 9 11 4 6 6 7 9
Max. 4 4 6 6 6 8 8 10 24 24 30 10 15 15 20 20

Source [13] [1] [1] [1] [1] [1] [1]
[19] [20] [20] [20] [13] [19] [20] [20] [20] [20] [20] [19] [13] [19] [13] [19]

instances that were attacked in [1,13,19,20]; more specifically, 16 instances were
chosen with values for the number of jobs, number of tools, and machine capacity
ranging in [10,50], [9,60] and [4,25] respectively. Table 1 shows the different prob-
lem instances chosen for the experimental evaluation where a specific instance
with n jobs, m tools and machine capacity C is labeled as Cζm

n .
Five different datasets2 (i.e., incident matrixes or relations among tools and

jobs) were generated randomly per instance. Each dataset was generated with
the restriction, already imposed in previous works such as [13], that no job is
covered by any other job in the sense that ∀i, j ∈ [1, m] ∧ i �= j : τi �⊆ τj where
τk = {h | Ahk = TRUE} is defined as before, i.e., the set of tools required to
process job k. The reason to enforce this constraint is to avoid the simplification
of the problem by preprocessing techniques as done for instance in [1] and [20].

For GA, HC and MA, the algorithms were run 10 times (per instance and
dataset) and a maximum of ϕn|n − C| evaluations3 per run (with ϕ > 0).
Preliminary experiments on the value of ϕ proved that ϕ = 80 is an appropriate
value that allows to keep an acceptable relation between solution quality and
computational cost. Regarding the BS algorithm, because of its deterministic
nature, just one execution per dataset (and per value of beam width) was run and
the algorithm was allowed to be executed until exhaustion (i.e., until completing
the search). All methods were implemented in Java language version 1.5, and
all the experiments were carried out on a PC computer Toshiba with Operating
System Debian 1.6.x and 1.5 GHz/512 MB RAM. Tables 2 and 3 show the
obtained results grouped by problem instance.

Several considerations can be done here. For instance, HC performed better,
with respect to the best solution result, in most of the cases than BS; this
is specially evident in the lower instances (i.e., those with smaller values of
n), although in some instances (i.e., 10ζ25

30 , 15ζ30
40 , 20ζ60

40) BS returned better
solutions. However, in average, HC behaves better than BS in the lower instances
although it seems evident than BS performs better than HC when the number

2 All datasets are available at http://www.unet.edu.ve/∼jedgar/ToSP/ToSP.htm
3 Observe that the number of evaluations increases with the number of jobs (that is

assumed to be related directly with the problem difficulty) and decreases when the
magazine capacity increases (that, in certain form, it is also inversely related to the
problem difficulty).
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Table 2. Results for n � 20 of GA, MA, HC, and BS considering several values
(1 ≤ i ≤ 5) for the beam width β. Best results are marked in boldface.

GA MA HC 1 β 2 β 3 β 4 β 5 β Evaluations

4ζ10
10 Av 8.88 8.68 8.96 10 9.8 9.6 9.6 9.6 4800

SD 1.518 1.618 1.624 2.098 1.833 2.059 2.059 2.059
B 7 7 7 8 8 7 7 7

6ζ15
10 Av 14.1 13.7 14.04 15.2 14.8 14.8 14.8 14.8 3200

SD 2.012 2.09 2.097 1.47 1.47 1.47 1.47 1.47
B 11 11 11 13 13 13 13 13

4ζ9
10 Av 8 7.86 8.04 8.4 8.4 8.4 8.4 8.4 4800

SD 0.8 0.721 0.894 0.49 0.49 0.49 0.49 0.49
B 7 7 7 8 8 8 8 8

6ζ12
15 Av 16.48 15.5 17 18.2 17.6 17.6 17.4 17.4 10800

SD 2.138 1.982 1.929 0.748 1.02 1.02 1.2 1.2
B 13 12 14 17 16 16 16 16

6ζ20
15 Av 23.62 22.38 24.08 26.2 25.8 25.2 25.2 25.2 10800

SD 2.134 1.938 2.115 2.315 2.135 1.6 1.6 1.6
B 20 20 21 23 23 23 23 23

8ζ15
20 Av 23.66 22.36 25.06 27 26 25.6 25.2 25.2 19200

SD 3.603 3.576 3.652 3.95 4.05 4.271 4.118 4.118
B 17 17 20 21 21 20 20 20

8ζ16
20 Av 28.5 26.66 29.18 29.4 29.4 29.4 29.4 29.4 19200

SD 2.202 1.986 2.16 1.625 1.625 1.625 1.625 1.625
B 24 23 25 27 27 27 27 27

10ζ20
20 Av 31.6 29.92 33.1 34.2 33.6 33.4 33.4 33.4 16000

SD 2.828 2.357 2.147 3.187 2.871 2.8 2.8 2.8
B 26 26 29 30 30 30 30 30

mean 26.52 24.9 27.2 33 32.6 32.4 32.4 32.4 6400
24ζ30

20 σ 3.061 3.282 3.572 4.427 4.499 4.63 4.63 4.63
best 22 20 22 28 28 28 28 28

mean 48.16 46.54 49.6 54 54 53.8 53.8 53.4 6400
24ζ36

20 σ 8.999 8.807 9.481 8.198 8.198 8.328 8.328 7.605
best 35 36 37 45 45 45 45 45

mean 42.82 41.04 44.48 52.2 50.2 50.2 50.2 50.2 16000
30ζ40

20 σ 5.183 4.539 5.1 6.242 7.026 7.026 7.026 7.026
best 32 31 35 42 39 39 39 39

of jobs increases over 30. Also, it is evident that GA and MA provide the best
results and clearly outperform both the HC and BS algorithms.

Focusing on the evolutionary proposals, notice firstly that the permutational
GA provides comparable results, in terms of best solutions, to those of MA. In
fact, the GA presents roughly the same performance than the MA, but becomes
clearly inferior when the average is considered as the MA always provides better
results in this case.

A non-parametrical statistical test –Wilcoxon ranksum– was executed on the
results returned by all the executions performed by HC, GA and MA. Then a
comparison between each method with the other two was executed; Tables 4, 5
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Table 3. Results for n > 20 of GA, MA, HC, and BS described in [20] considering
several values (1 ≤ i ≤ 5) for the beam width β. Best results are marked in boldface.

GA MA HC 1 β 2 β 3 β 4 β 5 β Evaluations

mean 69.2 64.92 74.9 73.6 70.8 70.8 70.8 70.6 48000
10ζ25

30 σ 3.4 1.573 1.9 1.02 1.47 1.47 1.47 1.497
best 62 62 69 72 68 68 68 68

mean 105.08 100.86 111 111.6 110 109.2 107.8 107.8 36000
15ζ40

30 σ 13.335 12.9 14.323 15.187 13.55 13.407 13.257 13.257
best 81 81 89 89 89 89 89 89

mean 105.28 97.96 111.5 105.2 103.2 102.8 102.8 102.4 80000
15ζ30

40 σ 8.775 7.887 8.273 8.518 9.579 9.745 9.745 9.972
best 88 86 98 96 93 93 93 93

mean 220.6 211.88 231.1 221.8 220 218.8 218.6 218.6 64000
20ζ60

40 σ 8.825 7.812 9.104 7.026 6.164 5.706 5.817 5.817
best 200 201 216 215 215 215 215 215

mean 161.82 153.36 169 167.2 164 162.8 162.8 161.8 100000
25ζ40

50 σ 13.671 13.52 13.485 12.906 12.554 12.335 12.335 12.156
best 141 132 146 152 147 147 147 147

Table 4. Comparison: HC vs. GA/MA. Each cell displays the number of datasets
in which HC is considered significantly better than GA/MA according to Wilcoxon
ranksum test.

4ζ10
10 4ζ9

10 6ζ15
10 6ζ12

15 6ζ20
15 8ζ15

20 8ζ16
20 10ζ20

20 24ζ30
20 24ζ36

20 30ζ40
20 10ζ25

30 15ζ40
30 15ζ30

40 20ζ60
40 25ζ40

50

GA 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
MA 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Table 5. Comparison: GA vs. HC/MA. Each cell displays the number of datasets
in which GA is considered significantly better than HC/MA according to Wilcoxon
ranksum test.

4ζ10
10 4ζ9

10 6ζ15
10 6ζ12

15 6ζ20
15 8ζ15

20 8ζ16
20 10ζ20

20 24ζ30
20 24ζ36

20 30ζ40
20 10ζ25

30 15ζ40
30 15ζ30

40 20ζ60
40 25ζ40

50

HC 0 0 0 0 0 3 0 2 1 2 2 4 5 5 5 4
MA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6. Comparison: MA vs. HC/GA. Each cell displays the number of datasets
in which MA is considered significantly better than HC/GA according to Wilcoxon
ranksum test.

4ζ10
10 4ζ9

10 6ζ15
10 6ζ12

15 6ζ20
15 8ζ15

20 8ζ16
20 10ζ20

20 24ζ30
20 24ζ36

20 30ζ40
20 10ζ25

30 15ζ40
30 15ζ30

40 20ζ60
40 25ζ40

50

HC 2 0 0 5 5 5 5 5 3 5 5 5 5 5 5 5
GA 0 0 1 2 4 2 5 4 3 3 1 4 4 5 5 4
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and 6 show the results of the comparison of HC vs. GA and MA, GA vs. HC
and MA, and MA vs. HC and GA respectively. Each cell in the tables indicates
the number of times that the corresponding algorithm is significantly better
than the other one with respect to the 5 datasets per instance. For example,
a 4 appearing in Table 6 for the instance 10ζ25

30 in the row of GA means that
the MA behaves significantly better, according to the statistical test, than the
GA in 4 of the 5 datasets that were used to solve the specific problem instance.
These results corroborate our preliminar considerations and one can observe that
the GA outperforms HC when the number of jobs increases and that the MA
outperforms both HC and GA and also behaves in general evidently better than
the GA.

6 Conclusions and Future Work

We have tackled here the tool switching problem (in its uniform version) and
have proposed three methods to attack it. Two of the methods are, as far as we
know, the first evolutionary approaches to handle the tool switching problem.
Combining ideas from the realm of evolutionary computation and hill climbing
methods, we have specifically devised an evolutionary proposal that takes the
form of a memetic algorithm. An empirical evaluation was executed in order to
prove the validity and performance of the proposed techniques. For comparison
purposes, we have considered in the experimentation the beam search method
described in [20], as this was demonstrated to be specially efficient and practical
compared to another techniques previously published.

The experiments demonstrate that the three methods (i.e., a hill climbing
search, a genetic algorithm and a memetic algorithm) provide encouraging re-
sults and are capable of improving the results obtained by the BS. Focusing
on our proposals, the memetic algorithm outperforms both a permutational ge-
netic algorithm and a steepest-ascent hill climbing method. A statistical test
demonstrates that the MA is significantly superior to the other two proposals.

We believe that there is room for improvement. For instance, it would be
interesting to prove alternative methods to HC such as tabu search or variable
neighborhood search. In this case, it would be necessary to obtain a good balance
between intensification and exploration in the local search component of the MA;
in our proposal we have leaned towards exploration by evaluating only a part
of the whole neighborhood space, and have obtained encouraging results, but
perhaps a more intensive strategy can also produce valuable results. We also
plan to analyze new instances and variants of the problem [6,7,8].
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